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Abstract

This paper presents evidence that current research significantly underestimates
the effects of air pollution. Conventional methods of measuring pollution
exposure cannot account for sharp changes in pollution over short distances or
the wind-driven dispersion of pollutants. I use a state-of-the-art atmospheric
dispersion model, which solves these problems, with a natural experiment to
estimate the causal effect of NOx exposure on house prices in metropolitan Los
Angeles. The wind-based estimates are over 10 times larger than conventional
estimates and imply that the net social benefit of RECLAIM, the local cap-and-
trade program underlying the natural experiment, is roughly $500 million per
year.
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House price capitalization is routinely used to measure the social value of local
amenities which lack an explicit market. But the case of air pollution presents a
puzzle: house prices do not seem to respond very much to air pollution. Smith
and Huang (1995) note that improved air quality affects house prices much less
than would be expected given the health benefits. More recent studies, including
those using quasi-experimental research designs, have not resolved this puzzle.1

Deepening the confusion is a large literature which finds house prices to be very
responsive to many other locational amenities, including school quality (Black 1999;
Cellini, Ferreira, and Rothstein 2010); crime risk (Linden and Rockoff 2008; Pope
2008); and local cancer risk (Davis 2004). What is different about air pollution, a
disamenity whose negative value has been well established in other contexts?2

In this paper, I present evidence that air quality does have a large effect on house
prices and that estimates of the impact of pollution exposure can be severely biased
when exposure is poorly measured. Unlike other economic variables, there are no
large-sample data on air pollution exposure, so commonly used measures of exposure
are imprecise and geographically coarse. However, pollution concentrations can
change dramatically over short distances. Pollution spikes around highways and
polluting firms, particularly in the area just downwind of the pollution source. Coarse
measurements of pollution exposure are unable to account for granular changes
in exposure or the wind-driven distribution of pollution, resulting in significant
measurement error and biased regression estimates.

Moreover, the nature of this measurement error is such that natural experiments
do not necessarily remove the resulting bias. For example, in a geographic difference-
in-differences research design which uses distance to define treatment status, the
assumed treatment and control groups are contaminated because most pollution
travels downwind, making many “control” households heavily treated and vice versa.
Similarly, interpolations of pollution monitor data, which are often used to measure
local exposure, smooth over the many local spikes in pollution caused by firms

1. For example, Chay and Greenstone (2005) report a marginal willingness to pay to reduce
pollution in line with Smith and Huang (1995). See Section 1 for further discussion.

2. Neidell (2009) and Moretti and Neidell (2011) find that attendance at outdoor attractions drops
precipitously in response to pollution alerts. Qin and Zhu (2015) find that Internet searches in Chinese
cities for “emigration” spike on high pollution days.
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located between distant monitors. This leaves instruments which are based on firm
location or the monitor averages themselves correlated with the measurement error.

I solve these problems by measuring local exposure to air pollution with an
atmospheric dispersion model which can account for sharp changes in pollution
and the meteorological forces that drive its dispersion. The model, AERMOD,
was developed by atmospheric scientists with the American Meteorological Society
and the U.S. Environmental Protection Agency (EPA) and uses extensive data on
meteorological conditions and pollution sources to describe how a pollutant is
dispersed around its source. Because it explicitly considers individual pollution
sources, AERMOD captures the sharp changes in pollution exposure that happen
around each source. With comprehensive data on houses and administrative data on
all polluting firms in greater Los Angeles, I am able to map the behavior of every
firm to the air quality of every house in the region.

I use this atmospheric science–based measure of exposure in a quasi-experimental
hedonic framework to answer three questions. First, I estimate the effect on house
prices of a large decrease in exposure to industrial NOx emissions and the associated
marginal willingness to pay (MWTP) for pollution reduction. Second, I calculate
the implied social value of RECLAIM, a cap-and-trade program for NOx in southern
California which forms the basis of my natural experiment. Third, I re-estimate
the house price effects using conventional measures of pollution exposure to test
whether these measures are indeed biased downward. For my natural experiment I
use the California Electricity Crisis of 2000 which precipitated a permit shortage in
RECLAIM. This caused permit prices to skyrocket and firms in the area to quickly
adopt abatement technology, suddenly and permanently lowering their emissions.

I find that house prices are very responsive to air quality, much more so than
previous findings would suggest, and that RECLAIM led to substantial welfare gains.
The average house in the sample area gained an additional $7,800 in value due to
the Crisis. The implied MWTP to reduce exposure to industrial NOx emissions is
$3,306 per unit of reduced exposure, whereas past estimates have ranged around
$200 per unit.3 This MWTP implies that RECLAIM, whose social value has long

3. It should be noted that past studies have focused on the price effect of particulate matter rather
than NOx, and care should be taken comparing estimates across pollutants. Section 6.2 includes a
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been contested, generates a net social benefit of almost $500 million annually.4

However, when using conventional methods for measuring pollution exposure, I
am unable to detect any effect the Crisis had on house prices. I estimate geographic
difference-in-differences models with various treatment radii (as in Currie and
Walker 2011; Hanna and Oliva 2015; Currie et al. 2015; and others) and models
assuming uniform radial dispersion of pollution (as in Banzhaf and Walsh 2008). I
also estimate instrumental variables models, based on the geographic diff-in-diffs,
that use interpolations of pollution monitor readings as the endogenous regressor
(as in Hanna and Oliva 2015; Schlenker and Walker 2016; and others). None of
the estimates are statistically or economically significant, with many being wrongly
signed, suggesting that the much larger price effects found with AERMOD are due
to methodology and not this particular sample or natural experiment.

1 The Puzzle of Clean Air’s Low Valuation
House prices have long been used to measure the marginal willingness to pay
(MWTP) for non-market goods. The MWTP for pollution abatement has been
measured this way many times, starting with Ridker and Henning (1967).

The current body of literature suggests that house prices do not respond much
to pollution, implying a disparity between the MWTP for pollution reductions and
the expected health benefits. In their meta-analysis of OLS estimates of MWTP,
Smith and Huang (1995) find that the interquartile range of estimates is $0 to
$233 per microgram of Total Suspended Particulates (TSP) per cubic meter of air
(or µg/m3 of TSP).5 They also find that the mean estimate, $259 per µg/m3, only
covers 6–33% of the associated VSL-based mortality cost. More recent instrumental
variables estimates have not narrowed this disparity. Chay and Greenstone (2005)
use counties’ non-compliance with the National Ambient Air Quality Standards
(NAAQS), county-level house prices, and average county pollution monitor readings
to estimate a MWTP of $191 for a 1 µg/m3 reduction in TSP, well within Smith

more thorough discussion of this point.
4. Details of this calculation, including social costs considered, are given in Section 7.
5. All dollar values presented here are deflated to 2014 dollars using the all-items CPI unless

otherwise noted.
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and Huang’s interquartile range.6 Bayer, Keohane, and Timmins (2009) also use
county-level data on house prices and pollution. Instrumenting for local pollution
with pollution from distant sources, they estimate a MWTP of $131 per µg/m3

reduction of PM10.7

This ostensible disconnect between air pollution’s costs and house prices is
unusual because prices readily respond to other location-specific amenities. Cellini,
Ferreira, and Rothstein (2010) use house price responses to bond override elections
and estimate the average household is willing to spend $1.50 for a $1 increase in
school capital expenditures. Linden and Rockoff (2008) find that when a registered
sex offender moves into a neighborhood, the value of nearby houses drops by about
$7,000, more than the FBI’s estimates of victimization costs would suggest. Davis
(2004) looks at how prices respond to the appearance of a cancer cluster in Churchill
County, Nevada, where the rate of pediatric leukemia suddenly skyrocketed for
unknown reasons. The price response there implies the welfare cost of pediatric
leukemia is about $7 million, in line with estimates of the value of a statistical life
from Aldy and Viscusi (2008).

Given the proclivity of house prices to capitalize the value of nearby amenities,
the muted price response to air pollution is made even more puzzling by households’
strong revealed preferences for clean air in other contexts. Neidell (2009) and
Moretti and Neidell (2011) find that attendance at outdoor attractions like sporting
events drops precipitously in response to smog alerts. Qin and Zhu (2015) find that
Internet searches for “emigration” spike in Chinese cities on high pollution days.

2 Econometric Problems Behind the Puzzle
As an economic variable, exposure to air pollution is unusual because, unlike wages
or education, there are no large-sample data on individual-level pollution exposure.
Instead researchers approximate or infer exposure levels. Two such approximations
are particularly common in the economics literature (see Currie et al. 2014). The
first is to use a geographic difference-in-differences design where people close to a

6. Taken from the preferred specification in Chay and Greenstone (2005), Table 5A, column 4.
7. This estimate is based on Bayer, Keohane, and Timmins (2009), Table 6, column 2 and assumes

costless migration, which is standard in the literature. They also fit a structural model that allows for
costly migration, which yields a MWTP estimate of $352.
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pollution source are assumed to be “treated” by the source’s pollution while those
slightly farther away are not treated but otherwise a good counterfactual. The second
approach is to use the EPA’s network of pollution monitors to proxy for person-,
neighborhood-, or county-level exposure, usually by interpolating between monitors.

However, both of these methods suffer from the same problem: They are unable
to capture sharp changes in pollution across short distances which biases regression
estimates, even those founded on a quasi-experimental research design.

2.1 Bias in Geographic Diff-in-diff Estimates
In a geographic difference-in-differences design, people around a polluting firm or
other pollution source are assigned to treatment and control groups based on their
proximity to the firm. The econometrician chooses radius r0 around the firm to
define the treatment group and radius r1 > r0 to define the control group, reducing
the problem to a standard diff-in-diff. The difference over time is taken around some
shock to the firm’s pollution output, such as a policy change or other exogenous
shock (e.g., Currie and Walker 2011; Hanna and Oliva 2015; Schlenker and Walker
2016). For practical reasons, geographic diff-in-diffs are often centered around more
routine changes in firm behavior, such as the construction and opening of the firm
itself (e.g., Davis 2011; Currie et al. 2015). A key advantage of the geographic
diff-in-diff design is that it allows for the estimation of reduced-form effects of policy
changes when the exposure data necessary for second-stage estimates is lacking, as
is often the case (e.g., Currie and Walker 2011; Davis 2011; Currie et al. 2015).

The use of a geographic diff-in-diff to study air pollution is problematic because
air pollution does not disperse from its source uniformly in all directions, nor is it
confined to the neighborhood immediately around the firm. Pollution is blown in
the direction of prevailing winds, and significant amounts can travel dozens of miles
downwind. This wind-driven dispersion contaminates the geographic diff-in-diff’s
circular treatment and control groups, with many individuals upwind in the treatment
area having little to no treatment and many downwind in the control area being
intensely treated.

To derive the resulting bias, consider a model where the true effect of a polluting
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firm f on arbitrary outcome yit is

yit = Nitα +Xitβ + εit (1)

where Xit is pollution exposure to i at time t, Nit is exposure to non-pollution
disamenities created by the firm, and t ∈ {0,1} indexes time, with t = 0 preceding
some shock to the firm’s emission rate and t = 1 following the shock. Let ri f be the
distance of i from f and assume that r0 is chosen so that r f i > r0 implies Nit = 0.
The reduced-form geographic diff-in-diff estimation equation is

yit = γ1 +posttγ2 +Ciγ3 +
(
Ci×postt

)
γGD +µit (2)

where Ci = 111{ri f ≤ r0} is a dummy variable for individuals living in the treatment
area and postt = 111{t = 1}. If Xit = 0 for ri f > r0, then γ̂GD recovers the average
effect of the pollution shock on people living in the treatment area.

However, this key assumption—the control group is not exposed to pollution—is
violated if pollution is carried far downwind. The distribution of pollution around its
source depends on meteorology and the source’s physical characteristics. Exposure
can be written Xit = m f t · h(r f i,θ f i;SSS f ), where m f t is firm f ’s emissions in time t

and h is the probability density function that a unit of emissions ends up at distance
r and direction θ relative to the firm. The vector SSS f contains variables about the
firm’s polluting equipment (e.g., height of the smoke stack) and local meteorological
conditions like wind speed and direction. If wind speed is high or the smoke stack
is tall, a significant amount of pollution can travel well beyond the 1 or 2 miles
generally used for the treatment radius r0.8

The resulting bias can be derived from the diff-in-diff estimator:

γ̂GD =E[yit |C = 1,post = 1]−E[yit |C = 1,post = 0]

−
(
E[yit |C = 0,post = 1]−E[yit |C = 0,post = 0]

)
(3)

We can write the expected value of yit conditional on i’s treatment assignment in
terms of the average exposure to the treatment group:

Ei
[
yit |C

]
=C · N̄C

t α +
[
C+ϕ(1−C)

]
X̄C

t β (4)

8. Currie and Walker (2011) use an r0 of 2 kilometers (1.24 miles). Davis (2011) uses values of 1
and 2 miles. Currie et al. (2015) use 0.5 and 1 miles. Hanna and Oliva (2015) use 5 kilometers (3.1
miles). Figure 1 compares actual exposure measured by AERMOD to 1- and 2-mile radii.
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where X̄C
t = Ei

[
Xit |C = 1

]
and ϕ = Ei

[
Xit |C = 0

]
/Ei
[
Xit |C = 1

]
is the ratio of

average exposure in the control and treatment groups, so average exposure in the
control group is ϕX̄C

t . Substituting Equation (4) into Equation (3) yields

γ̂GD =
(

N̄C
1 − N̄C

0

)
α︸ ︷︷ ︸

Non-pollution Effect

+(1−ϕ)︸ ︷︷ ︸
Wind bias

·
(

X̄C
1 − X̄C

0

)
β︸ ︷︷ ︸

Pollution Effect

(5)

The first term captures the firm’s non-pollution effects. As β is the coefficient of
interest, the ideal research design would hold Nit constant over time, eliminating
this term.9 The second term is the pollution effect, multiplied by the contamination
factor (1−ϕ).

Thus, even with an ideal natural experiment that holds non-pollution effects
constant over time, the estimated pollution effect is biased because the effect on the
control group, which is also treated, cancels out some of the effect on the treatment
group. The degree of bias is driven by the wind and other factors in SSS f that shape
the geographic distribution of pollution, h. For example, because ϕ increases with
wind speed, the contamination factor (1−ϕ) and γ̂GD both become more negative
as wind speed increases. Furthermore, because h need not be monotonic in distance
r, ϕ need not be less than 1, meaning γ̂GD could have the wrong sign.10

It is important to note that the dependence of ϕ on h (and SSS f in particular) implies
that the bias will vary by pollution source and location. Because bias increases with
wind speed and greater Los Angeles is one of the least windy areas in the United
States, any bias found in by study is likely to be a lower bound for bias in more
windy areas. Similarly, when pollution is emitted close to the ground, more of it
stays close to the source, keeping ϕ low. This suggests that estimates of the effects
of cars (e.g., Currie and Walker 2011) may suffer from less bias. However, even car
exhaust gets carried by the wind (Hu et al. 2009), and a low ϕ does not mitigate any
separate biases, such as those introduced by monitor data. In addition, it is possible
that estimates of health effects are not as biased as those for houses because houses

9. This is naturally not the case when the shock to the firm is the construction of the firm itself. In
such cases, N̄C

1 > N̄C
0 = 0. Note also that as the wind gets stronger and ϕ → 1, γ̂GD→ αN̄C

1 and the
geographic diff-in-diff recovers the non-pollution effects of the firm.

10. An example of the non-monotonicity of exposure with distance is given by Figure 1, which is
caused by the height of the firm’s smoke stack and the high temperature and buoyancy of the emitted
gases. This also illustrates the importance of variables in SSS f other than wind direction.
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are fixed in space while people are mobile and thus exposed to the varying levels of
pollution in their community.

Econometrically, this contamination problem is a common issue in program
evaluation (e.g., Miguel and Kremer 2004) and can be fixed by accounting for the
average treatment intensity of each group as in two-stage least squares. However,
this requires a good measure of treatment intensity. As Section 2.2 argues, data from
geographically sparse pollution monitors do not fit this criterion.

2.2 Bias from Pollution Monitor Interpolation
When data on a spatially correlated variable like rainfall is unavailable for all
locations of interest, it is possible to exploit this spatial correlation and interpolate
the missing values. Given data on the outcome of interest {yi}N

i=1, corresponding
data on the spatial variable, {xi}N

i=1, are needed but unavailable. However, it is
often the case that data are available at a small set of monitor locations, {xm}M

m=1.
If x is correlated across space, so that cov(xi,xm) is large when i and m are close
to one another, the monitor data can be used to construct an interpolation x̃i =

∑m wimxm, where the weights wim are determined by the interpolation technique
used. Monitor interpolation is the predominant method used in the economics
literature to measure pollution exposure, with inverse distance weighting (IDW)
being the standard implementation since Neidell (2004) and Currie and Neidell
(2005).11

Unfortunately, air pollution is poorly suited for interpolation because the cor-
relation between a monitor reading xm and exposure xi can be greatly affected by
the presence of pollution sources between m and i. Unlike rainfall and other natural
phenomena, air pollution is created by many distinct sources like firms and cars.
This creates sharp changes in pollution concentrations over very short distances,
such as just upwind versus downwind of a factory. This in turn means the correlation
between xi and xm depends on more than just distance.

Consider cov(xi,xm) when a polluting firm sits between i and m. If the wind
blows toward one, the other will see a much smaller portion of the firm’s pollution,

11. IDW uses wim = d−1
im /∑m′ d

−1
im′ where dim is the distance between i and m. Another common

measure of exposure is the average of a county’s monitors, essentially a flat interpolation across the
county.
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creating significant differences between xi and xm. Thus, cov(xi,xm) depends on the
direction and speed of the wind, the height of the firm’s smoke stack, and a host of
other information not contained in the monitor data alone, making xm of little use in
predicting the value of xi unless m and i are very close. This single-firm example
scales to a world with many firms and monitors. The monitors do not pick up any
variation in pollution when the source is not upwind of the monitor, and interpolating
between monitors smooths over most of the local spikes in pollution exposure that
exist around firms.

The way independent pollution sources segment the distribution of x across
space creates a missing information problem whose severity is proportional to the
geographic density of the monitors relative to the density of sources. In the extreme
case with many monitors around every firm, there will be few instances where i

is separated from all monitors by a firm and sufficient data will exist to accurately
describe the distribution of x. This is the approach taken by atmospheric chemists
who temporarily lay down dense monitor arrays (e.g., every 100 meters) to study
dispersion patterns around a particular source (e.g., Perry et al. 2005). On the other
extreme, with only a few monitors and many firms, xi may be completely unrelated
to all monitor readings and values interpolated from the monitors will be no better
than noise. Empirically, the situation in the United States is much closer to the latter
scenario with few monitors. According to the EPA’s AirData summary files, the
average county had 1.01 monitors in 2005, with almost two-thirds of counties having
zero monitors. In the Los Angeles area specifically, one of the most studied areas
for air pollution in the United States, there are hundreds of firms for every pollution
monitor and monitors are spatially sparse, as shown in Figure A3.

Because the problem with interpolation is that the monitor data lack sufficient
information, no interpolation technique is able to overcome it. This includes Kriging,
a more advanced interpolation technique and the best linear predictor of xi when
certain assumptions about the spatial covariance of xi hold (see Cressie 2015).
The strength of Kriging is that it uses the monitor data to explicitly estimate a
spatial covariance function for xi to determine the proper interpolation weights wim.
However, as argued above, data from a sparse monitor network cannot accurately
describe the spatial covariance of pollution with many discrete pollution sources.
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2.2.1 Evidence of Interpolation Bias in Prior Research

The problems with interpolation described above are evidenced in prior literature.
First, the correlation of interpolated exposure and actual exposure appears to

be low after controlling for secular temporal correlation. When using interpolated
pollution measures, it is common practice to assess the quality of the interpolation
using a leave-one-out cross-validation technique. Pollution exposure at each monitor
is predicted using all other monitors, x̃m = ∑m′ 6=m wmm′xm′ . Then the correlation
of the predicted and true values, corr(x̃m,xm), is used to gauge the quality of the
interpolation. These correlations can be quite high, often above 0.9.12 However,
the correlation of xm and x̃m reported is usually unconditional and captures not
just spatial but temporal correlation which will be partialed out in regressions.
Consider the extreme case with no spatial correlation, where xit = δt + εit ; δt is a
time shock common to all locations such as regular seasonal variation; and εit is a
zero-mean i.i.d. white noise term. In this case, corr(x̃mt ,xmt) will be non-zero and
potentially large, while the correlation conditional on t—the more relevant value for
analyses with time controls—will be zero.13 This is consistent with Karlsson and
Ziebarth (2016), who find that the correlations for pollution IDW interpolations fall
precipitously with time controls, from 0.6–0.9 to 0.15–0.4, while weather variables,
which are smoother over space, do not exhibit this problem.14

Second, the smoothing over of local spikes in pollution around pollution sources
should lead to non-classical measurement error in interpolated values, with x̃it being
too low for larger xit . Write x̃it = xit +ηit where η is the interpolation error. If
the interpolation smooths over variation in x, it will be true that Var(x̃it)< Var(xit),
which implies cov(xit ,ηit)< 0.15 Knittel, Miller, and Sanders (2016) plot η̂mt and
xmt from the cross-validation exercise of their IDW interpolation and find that x̃mt

is indeed increasingly too low for higher values of xmt .16 They also report that the

12. Currie and Neidell (2005) report cross-validation correlations of 0.92 for ozone, 0.77 for PM10,
and 0.78 for CO.

13. See Appendix A for derivations.
14. See Table F1 in Karlsson and Ziebarth (2016).
15. This follows from Var(x̃it)−Var(xit)< 0 and the definition of x̃it .
16. Lleras-Muney (2010) also presents evidence of non-classical measurement error in Kriging

interpolation, showing that the Kriging standard error increases with xmt . However, she does not
report whether the measurement error is increasingly positive or negative.
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magnitude and sign of the interpolation error is uncorrelated with the distance to
the nearest monitor. Karlsson and Ziebarth (2016) complete a similar exercise for
temperature, which is smoother over space than pollution, and find that η̂mt and xmt

are uncorrelated.

2.2.2 Interpolation bias persists in quasi-experimental designs

While attenuation due to measurement error is often resolved by using instrumental
variables, this is only true if the measurement error and the instrument are uncor-
related. Let z be an instrument such that cov(x,z) 6= 0 and cov(y,z) = 0 and let
η = x̃− x again be the interpolation error. From the canonical probability limit of
the IV estimator, we get

plim β̂IV = β · cov(x,z)
cov(x,z)+ cov(η ,z)

= β · cov(x,z)
cov(x̃,z)

(6)

Note that the asymptotic bias could be positive or negative depending on the joint
distribution of (x,z,η) which will vary across research designs.

First, consider the case of a geographic diff-in-diff, which assigns treatment
status to those near pollution sources. As discussed above, if pollution sources
significantly outnumber monitors, then the pollution spikes caused by many sources
will be smoothed over, causing the measurement error to spike near the source.
If the treatment variable is an indicator for “near the source”, then the treatment
variable is clearly correlated with the measurement error and β̂IV is inconsistent.
However, the signs of the covariances in Equation (6), which determine the sign of
the asymptotic bias, depend on the joint distribution of (x,z,η) which will vary from
case to case with the number and location of monitors, the spatial distribution of the
study population, and other factors.

Next, consider county-level studies using the Clean Air Act (CAA) as a natural
experiment. In these studies, x̃it is usually the average of a county’s monitors and is
assumed to represent average exposure in the county. The CAA established limits
(National Ambient Air Quality Standards or NAAQS) on county-level pollution as
measured by the county’s average monitor readings, making the regulatory metric
identical to x̃it . If a county’s x̃it exceeds the NAAQS it is in “non-attainment” and
local regulators are given additional authority to limit local emissions to lower x̃it .
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Thus, the onset of the NAAQS resulted in exogenous changes in local pollution as
non-attainment counties suddenly faced additional regulatory pressure while the
remainder did not.17

Such a research design is likely biased downward because the instrument is
more closely related to x̃ than x because regulators specifically target x̃ rather than x.
Monitors are not sited within a county to form a representative sample of population
exposure, and there is evidence that local regulators strategically site monitors to
reduce the likelihood of their county violating the NAAQS (Grainger, Schreiber,
and Chang 2016).18 In addition, Auffhammer, Bento, and Lowe (2009) find that
regulators put more effort into reducing pollution levels at problematic monitors
within a county, resulting in uneven treatment across monitors and the county. This
means that the CAA policy shock affects x̃ more than x which, as Equation (6) shows,
leads to downward biased estimates.

3 Measuring Exposure with a Dispersion Model
Atmospheric dispersion models solve the problems described above by explicitly
accounting for the sudden changes in pollution exposure around firms and the way
pollution is distributed by meteorological forces.

A dispersion model uses data on a polluting firm and the meteorology around
it to predict the impact of the firm’s pollution on air quality at nearby locations.
Recall from Section 2.1 that exposure at location i to firm f ’s pollution can be
written xi f t = m f t · h(r f i,θ f i;SSS f ), where h is a probability density function over
locations (r,θ) for pollution emitted by f . This distribution over space depends on
SSS f , the firm’s characteristics (e.g., stack height) and surrounding meteorology. An
atmospheric dispersion model is a model of h developed by atmospheric chemists
and validated with controlled experiments.19 With knowledge of h and data on
m f t and SSS f , xi f t can be calculated for any arbitrary location (ri f ,θi f ), as can total

17. See, e.g., Chay, Dobkin, and Greenstone (2003) and Chay and Greenstone (2003, 2005).
18. A related problem with monitor averages is that the relationship between the monitors and the

true exposure distribution will change over time because monitors are fixed in space while people
and firms vary their behavior and location over time.

19. Validation experiments are conducted by placing a dense network of several dozen monitors
around a firm, releasing a rare, non-reactive tracer chemical, then comparing model predictions to
monitor readings. For example, see Perry et al. (2005).
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exposure, xit = ∑ f xi f t . Most importantly, by explicitly accounting for the local
distribution of pollution around every firm, exposure based on a dispersion model
does not suffer interpolation’s missing information problem.

In this paper, I use AERMOD, the EPA’s legally preferred model for short-range
applications. This preference is based on the model’s high accuracy as established
by peer-reviewed field tests (Perry et al. 2005).20 To account for meteorological
conditions, AERMOD uses data on temperature, mean and standard deviation of
wind speed and wind direction at multiple elevations; the standard deviation of
vertical wind speed; the convectively and mechanically driven mixing heights; and
other parameters.21 AERMOD also accounts for each smoke stack’s height and
diameter, the temperature and velocity of the gas exiting the stack, and the rate
at which the pollutant in question is emitted from the stack (mass per unit time).
Given these data, the model outputs the concentration of pollution at a location in
micrograms per cubic meter of air (µg/m3).

Calculating location-specific exposure using AERMOD and plotting it for the
analysis sample in metro Los Angeles makes the problems described in Section 2
more apparent.22 Figure 1 shows that ignoring the complex distribution of pollution
around a firm causes geographic diff-in-diffs to have contaminated control samples
and to miss the exposure effects for large portions of the population. The figure
shows the average exposure to NOx emitted by the Scatterwood Generation Station
in Los Angeles in 1999, with circles drawn at 1 mile and 2 miles to represent the
geographic diff-in-diff treatment and control radii described in Section 2.1. Pollution
exposure is significantly higher to the northeast, the direction of prevailing winds,
with high concentrations at 5 and even 10 miles downwind, well beyond the 2-mile
control restriction. Furthermore, the area with the lowest exposure in the 2-mile
sample area is actually in the “treatment” area, right next to the firm.23

Figure 2 shows how quickly pollution levels can change over short distances,

20. Regulatory preference is stated in 40 CFR pt. 51, app. W (2004). See Cimorelli et al. (2005)
for a rigorous development of the model itself.

21. A full list of the variables used is found in the AERMOD user manual or Cimorelli et al. (2005).
22. Section 5 describes these data and how I implement the AERMOD model.
23. This is because hot gases are buoyant and can travel considerable horizontal distance before

reaching the ground, especially when released from a tall smoke stack.
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undermining the usefulness of monitor data. It plots exposure to NOx from all
major firms across the sample area in metro Los Angeles, as well as the locations of
pollution monitors. This map shows a great deal of variation in pollution, with far
more spikes in local exposure than monitors available to measure them.

Figure 3 further highlights the over-smoothing problem that results from inter-
polation by taking the exposure values in Figure 2 and interpolating between the
marked monitor locations. Panel A uses inverse distance weighting (IDW) and Panel
B uses the more advanced Kriging procedure.24 In both cases, most of the spatial
heterogeneity is gone, and areas that differ by an order of magnitude in Figure 2 are
assigned the same exposure by the interpolations.

Together, these figures help explain the difficulties in measuring pollution expo-
sure and help explain some contradictory results in the current literature regarding
the importance of wind. Of the economics papers to address the question of wind and
industrial pollution, only one, Hanna and Oliva (2015), finds that wind significantly
alters their estimates, and then only in certain specifications.25 This is likely due to
the complexity of atmospheric dynamics which include many factors beyond wind
direction and which affect not just the direction but the distance pollution travels
from its source.

To further validate the peer-reviewed AERMOD model, I compare AERMOD’s
predictions against contemporaneous monitor readings in Figure 4. Panel A plots
the AERMOD-predicted exposure to NOx over time at the northern monitor in the

24. The inverse distance weighting used here imposes zero weight on monitors farther than 15 km
from the point being interpolated. Such a restriction is commonly used in the literature to prevent
interpolated values from being based exclusively on far away monitors (see, e.g., Hanna and Oliva
2015). The Kriging procedure used here is simple Kriging with an exponential variogram.

25. Hanna and Oliva (2015) look at how labor supply in Mexico City responded to a drop in
pollution after the closure of a large refinery. They include the local elevation and a linear measure of
degrees downwind in some specifications. Davis (2011) estimates the effect of plant openings on
nearby house values and includes dummy variables for “upwind” and “downwind” in a robustness
check. Contrary to expectations, he finds that houses upwind of plants have slightly lower prices.
Schlenker and Walker (2016) measure the change in daily hospital visits due to changes in airport
traffic and incorporate wind speed and direction into one of their models, with no substantive
difference in results. Luechinger (2014) compares county-level infant health before and after the
mandated desulfurization of power plants in Germany. He calls a county “downwind” of the power
plant if it falls in the same 30-degree arc as the prevailing wind direction and includes downwind
dummies in all his specifications.
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sample area (see Figure 2) along with the actual monitor readings from that monitor.
Panel B plots the same for the southern monitor. The plotted values are averages
from the fourth quarter of each year because the AERMOD and monitor readings are
most comparable at this time due to the decreased number of atmospheric chemical
reactions during this time of year; these reactions are discussed in more detail
below.26 Figure 4 shows a strong similarity in AERMOD and monitor patterns
over time. What differences do exist are likely due to atmospheric chemistry, other
sources of NOx like cars, or limitations of the meteorological data discussed in
Section 5.

A final caveat about this measure of exposure is that it does not account for
chemical transformations of the emitted NOx. Pollutants often react with other
chemicals in the atmosphere after being emitted. In particular, NOx can combine
with free oxygen to form ozone which is not emitted directly by polluters and is only
present at ground level as a product of NOx-based reactions. Though AERMOD
and other models are capable of modeling this chemical process, it requires high-
quality data on pre-existing levels of many other pollutants.27 Because of the lack
of such data, I am unable to confidently model the NOx–ozone process. This
means AERMOD predicts “exposure to NOx emissions”, which potentially includes
ozone, rather than “exposure to NOx.” While this makes interpreting AERMOD
more difficult from a biochemical point of view, this actually makes it a more
comprehensive and policy-relevant metric because NOx emissions are the object of
regulation at firms.

26. It should also be noted that each variable is measured in different units. Because firm-level
monitoring tracks mass of NOx emitted (total grams of NO and NO2) AERMOD measures local
exposure in units of mass per volume of air (µg/m3). In contrast, monitors measure the number of NO
and NO2 molecules relative to other molecules in the air (parts per million). It is generally possible to
convert between these two units using the ideal gas law. However, RECLAIM’s monitoring systems
do not differentiate between NO and NO2 and the relative ratio of these chemicals is crucial to
converting between µg/m3 and ppm due to their different molecular masses. Given this limitation of
the data, and the fact that the NO/NO2 mix varies both across firms and across time within firms, it is
best to compare the AERMOD predictions and monitor readings as is.

27. While UV light is a main part of the NOx–ozone reactions, they also depend on a class of
chemicals called volatile organic compounds, or VOC’s. The rate of NOx–ozone conversion also
depends on the relative ratios of NO, NO2, and ozone. See Sillman (1999).
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4 Theory and Research Design

4.1 House Prices and Willingness to Pay
I use hedonic valuation to test whether households value clean air. When choosing
a place to live, households weigh a location’s amenities, ggg, against the bundled
price of those amenities, P(ggg). Rosen (1974) noted that utility-maximizing agents
will choose a bundle of amenities and prices (P(ggg∗),ggg∗) so that their marginal
willingness to pay for each gk ∈ ggg is equal to the corresponding marginal price,
Pgk .

28 Estimating average MWTP, which is difficult to do directly, can thus be
accomplished by estimating Pgk .

Using capitalization effects to estimate marginal prices and MWTP requires
some assumptions. First, in order to identify Pgk using intertemporal variation in
house prices, the shape of P, which is endogenously determined in equilibrium,
must be constant over the sample period (Kuminoff and Pope 2014). While this
assumption is less palatable for longer sample periods and low-frequency data, it is
likely to hold when using a short sample period and high-frequency data. Second,
agents choose (P(ggg∗),ggg∗) endogenously, potentially creating an omitted variables
problem (Bartik 1987; Epple 1987). Any attempt to identify Pgk must address this
and satisfy the identification assumptions specific to the chosen research design. I
address this problem by using the California Electricity Crisis of 2000 as a natural
experiment and outline the necessary assumptions below.

4.2 Electricity Crisis as Natural Experiment
In 1994, the South Coast Air Quality Management District (SCAQMD), which
regulates air pollution in Los Angeles, Orange, San Bernardino, and Riverside
Counties, instituted a cap-and-trade program for NOx emissions called RECLAIM.29

Firms were given an initial allocation of year-specific RECLAIM Trading Credits
(RTCs) for each upcoming year. Every year, firms must surrender one RTC for every
pound of NOx emitted. Excess RTCs can be sold to other firms but not banked for

28. There are a number of theoretical frameworks that can be used to estimate MWTP. See Palmquist
(2005) and Kuminoff, Smith, and Timmins (2013) for summaries of valuation using hedonic pricing
and equilibrium sorting models.

29. For additional details about RECLAIM, see Fowlie, Holland, and Mansur (2012).
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future years. To ease firms’ transition into the program, SCAQMD set the aggregate
number of RTCs to be high at first and gradually decrease. It was anticipated that
without firm adjustment total emissions would exceed total RTCs around 1999.

However, firms did not adequately adjust to the decreasing RTC cap. To avoid
exceeding the cap, some firms would need to lower emissions by decreasing produc-
tion or installing abatement equipment to remove NOx from their emitted smoke.
But RTC prices were so low there was little short-run incentive to abate. Some firms
even canceled orders they had placed for abatement equipment prior to RECLAIM.
SCAQMD reported in mid-1998 that abatement installations were lagging behind
what was necessary to avoid the coming “cross-over point” when emissions would
exceed permits. Firm managers later said they believed other “companies were re-
ducing their emissions or were going to begin installing [abatement equipment], and
as a result believed that they would be able to buy credits. . . [and] that long-term RTC
prices would continue to stay low or would at least gradually rise to the cross-over
point” (EPA 2002, p. 24).

This failure to anticipate increased RTC prices caused the cap-and-trade market
to nearly collapse at the onset of the California Electricity Crisis in mid-2000.
The heart of the Crisis was that existing electricity generators struggled to meet
demand.30 To prevent rolling blackouts, many electricity producers significantly
increased generation and, as a result, their NOx emissions. This caused the RTC cap
to finally bind which in turn caused a dramatic spike in RTC prices, from $2,800 per
ton in 1999 to $62,000 by the end of 2000 (see Figure A1).

Firms not generating electricity responded by finally installing abatement equip-
ment, leading to a permanent decrease in the average firm’s emissions of almost
40%. This sudden drop is shown by the solid line in Figure 5 which plots the annual
average of firm emissions scaled by own-firm sample maximum to give each firm
equal weight. The dashed lines show that emissions from electricity generators also
fell to roughly 50% of pre-Crisis levels once the Crisis subsided.

The permanence of these pollution reductions, despite the temporary nature

30. The exact causes of the Crisis, such as the deregulation of wholesale electricity markets and
market manipulation by certain actors, remain a source of debate. See Borenstein (2002) and Weare
(2003), especially Section 3.
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of the Crisis, is due to the permanence of the RECLAIM cap-and-trade market.
RECLAIM’s permanently binding emissions cap pushed firms to find permanent
abatement solutions. Had firms fully anticipated the eventual binding of the cap, the
Crisis may not have caused a sharp change in emissions behavior. Instead, the Crisis
synchronized the long-term adaptation to the cap.

The sudden, permanent drop in emissions that followed the Crisis can be used
to construct a set of instruments for local residents’ exposure to firms’ pollution.
When faced with high RTC prices, high-emission firms had a larger incentive to
cut emissions so the Crisis should have had a larger effect on houses downwind of
these firms. A house’s pre-Crisis exposure to emissions can thus be used to gauge
its exposure to the effects of the Crisis relative to other houses. Using aermodit ,
the AERMOD-predicted exposure to house i in time t, I define pre-Crisis exposure
aermod_prei as the average exposure across all 8 quarters in 1995 and 1996, the
first two years of firm-level emissions data. With aermod_prei as a measure of
treatment exposure, a variable intensity diff-in-diff instrument can be constructed:
aermod_prei× postt where postt = 111{t ≥ 2001} is an indicator variable for post-
Crisis years. The corresponding event study instruments, aermod_prei×δy where
δy is a dummy variable for year y, capture the differential effects of the Crisis on
house i in year y relative to the omitted year. These can be used to test the common
trends assumption underlying the diff-in-diff.

The identification assumption behind these instruments is that there are no
coincidental changes in house prices or non-industrial pollution exposure that are
correlated with the instruments, conditional on the other covariates. For example,
the housing bubble might have induced more appreciation in poorer neighborhoods
which may be relatively more polluted before the Crisis due to residential sorting.
Fortunately, we can explicitly control for time trends in such risk variables, and
the build up of the bubble was not a discrete event like the Crisis was, so this
assumption can be assessed using the event study. Another potential problem is
that the instruments might be correlated with changes in NOx from cars. This
would bias second-stage estimates upward if industrial exposure were correlated
with automobile exposure and the Crisis also caused a sudden and permanent drop in
car usage in the area. The former condition is unlikely given the large area that firms
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affect, while highways rarely have a significant impact beyond 500 meters (Karner,
Eisinger, and Niemeier 2010). Furthermore, traffic data show that no significant
change in driving patterns coincided with the Crisis.31

4.3 Estimation Strategy
The marginal price of pollution exposure can be estimated using the following model:

ln pit = β · aermodit +αi +δt +∑
k

γ1k ·wik · t +∑
k

γ2k ·wik · t2 + εit (7)

where pit is the price of house i in quarter t; aermodit is exposure to industrial NOx

emissions; αi are house fixed effects; δt are time (quarter-year) effects; (γ1k,γ2k) are
coefficients on quadratic time trends for local geographies, defined by a 10-km grid,
and local economic conditions that might affect house prices (discussed below); and
εit is the usual residual term. I estimate this equation using two-stage least squares
(2SLS), with the primary specification using aermod_prei×postt to instrument for
aermodit as detailed in the previous section.

The additional controls included in Equation (7) account for a number of factors
that may confound estimates of β , such as amenities not included in the available
data and differential trends across local housing markets. The house fixed effects,
αi, capture of all time-invariant characteristics about the house like square footage,
number of bedrooms, proximity to the beach, etc. The time effects, δt , account for
general trends in the housing market over time, as well as seasonal trends within
each year (e.g., if houses consistently sell for more during the summer). The local
geographic trends allow different parts of the metropolitan area to have different
secular trends.32

31. Unreported regressions show traffic patterns had no significant break from trend through
the period of the Crisis. I use data from the California Department of Transportation’s Freeway
Performance Management System (PeMS) for the Bay Area (region 11), 1999–2005, because data
for Los Angeles only go back to 2001.

32. Given the large size of the sample region, it would be natural for local trends to be defined by
cities, which have economically meaningful boundaries (unlike zip codes) and are generally small
but not so small as to be computationally burdensome (unlike tracts and zip codes). Unfortunately,
many houses do not have a city listed in the data, and the cities of Los Angeles and Long Beach cover
a large portion of the sample region while also having a great deal of within-city heterogeneity. To
overcome these issues, I use a 10-km grid which is aligned to preserve as many city boundaries as
possible. This grid results in 17 different areas that get their own quadratic time trend.
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The local trends in socio-economic variables are specifically targeted at concerns
related to the housing bubble, which differentially impacted neighborhoods with
poor credit. Mian and Sufi (2009) find that zip codes with lower incomes and credit
scores were affected more by the expansion of sub-prime credit. If these areas
also experienced relatively bigger air quality improvements thanks to the Crisis,
the coefficient on aermodit could pick up any increase in house prices due to the
expansion of sub-prime credit. To prevent this, I interact the following variables
with quadratic time trends: the average loan-to-value ratio for houses sold in the
house’s census tract in 2000; the average predicted interest rate for mortgages taken
out in the house’s census tract in 2000; and the median household income in the
house’s census block group in 2000.33 The predicted mortgage interest rate data was
calculated by DataQuick using proprietary methods and is included in the house data
described in Section 5.

I restrict the analysis to the period 1997–2005. RECLAIM’s first full year of
emissions data collection was 1995, and data from 1995 and 1996 are used to
construct aermod_prei. Following Fowlie, Holland, and Mansur (2012), I set the last
sample year to 2005. This avoids the peak and collapse of the housing bubble.

I restrict the region of analysis to the southwest part of SCAQMD territory,
roughly between Santa Monica and Huntington Beach (see Figure 2), to minimize
measurement error due to geography. Most major polluters are in this region, and
locations farther away from the pollution sources are likely to have less actual
exposure from the firms and a lower signal-to-noise ratio in aermodit . Predicting
the pollution distribution is also more complicated farther inland because of the San
Gabriel and Santa Ana Mountains, which can act like a dam, collecting pollution
blown by the prevailing winds from the south and west.

5 Data
Housing data come from county registrar and assessors’ offices via DataQuick,
Inc. The data include most sales in California since 1990. Data for each property
includes square footage, lot size, number of bedrooms and bathrooms, and the year

33. The first two variables are averaged at the tract because the sample of transacted of houses in
many block groups is very small.
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of construction. Each sale includes the value of all loans taken against the property,
as well as interest rates as estimated by DataQuick using proprietary methods. The
median income of each house’s Census block group is taken from the 2000 Census.

Sales outside normal market transactions are dropped since they may not accu-
rately reflect the market’s valuation of the house. Specifically, all transactions must
be arms-length, non-distressed sales (i.e., no foreclosure sales or short sales) with a
price of at least $10,000. Extremely high-value sales (the top 0.1%) are dropped. I
also drop sales that occur within 90 days of a previous transaction, as many of these
are duplications. The sample is also restricted to homes built before 1995 to preclude
direct sales from developers to consumers. Table A1 shows summary statistics for
houses in the sample, including sale price, property characteristics, number of times
sold, etc. House prices are deflated to real 2014 dollars using the all-items CPI.

Most of the firm data come from SCAQMD via public records requests (SCAQMD
2015a). These data include each firm’s name, address, SCAQMD-assigned ID num-
ber, the mass of NOx the firm emitted every quarter from 1995 to 2005, and all
relevant RTC data, including initial allocation of RTCs, the quantity, price, and vin-
tage of exchanged RTCs. Firms’ operating addresses were geocoded to get latitude
and longitude to represent the location of the firm’s smoke stacks. Firms’ SIC info is
taken from Fowlie, Holland, and Mansur (2012). Data on firms’ physical character-
istics (smoke stack height and diameter, and temperature and velocity of gas exiting
the smoke stack) come from the National Emissions Inventory (NEI).34 Firms were
matched to the NEI using SCAQMD ID number, and firm name and address. Full
details of the construction of the firm-level data are given in Appendix B. Table A2
gives summary statistics by 4-digit SIC on emissions, smoke stack parameters, aver-
age distance to the nearest meteorological station, and the number of firms in each
industry group.

Data on local meteorological conditions come from SCAQMD and were gathered
by 27 meteorological stations throughout the region.35 The data include hourly
observations for temperature, wind speed and direction, and other variables described

34. Regulators often collect these data specifically to run atmospheric dispersion models like
AERMOD, but the data collected by SCAQMD could not be made available (SCAQMD 2015b).

35. The data are accessible via the SCAQMD website: http://www.aqmd.gov/home/library/
air-quality-data-studies/meteorological-data/data-for-aermod
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in Section 3. Each station provides at least three years of data between 2006 and
2012. While these stations were not in operation at the time of the Crisis, wind
patterns at the given locations are very stable over time.

Air pollution monitor data come from the California Air Resources Board
(CARB) and include hourly readings for NOx and ozone in parts per million (ppm).
I aggregate the hourly measures to daily and then monthly averages following
Schlenker and Walker (2016). I exclude monitors that did not operate for the entire
1997–2005 sample period. The location of each meteorology and pollution monitor
is shown in Figure A3.

I use AERMOD to construct a measure of a house’s exposure from all industrial
sources. Software implementing AERMOD is available on the EPA’s website.36 As
discussed in Section 3, house i’s exposure to NOx emissions from firm f at time t can
be written xi f t = NOx f t ·h(r f i,θ f i;SSS f ), where SSS f contains information on the firm’s
smoke stacks and its surrounding meteorology. Meteorological data for SSS f is taken
from the meteorology monitor closest to the firm. Given these data and a house’s
location, AERMOD outputs aermodi f t , the house’s exposure to the firm’s emissions.
The house’s total exposure to industrial NOx emissions is aermodit = ∑ f aermodi f t .

Because AERMOD loops over all firms, houses, and hours of meteorological
data, it is computationally intensive for such a large sample and so I impose several
restrictions on the model for feasibility. First, I only calculate exposure to houses
that are within 20 kilometers of a given firm and set exposure outside this radius to
zero. Second, I use one year of meteorological data, 2009, which is also the only
year during which all of the meteorological stations described in Section 5 were
operating. Third, I construct an arbitrary 100-meter grid by rounding each house’s
UTM coordinates to the nearest 100 meters and calculate the exposure value at the
center of each grid square. Houses are then assigned exposure values according to
the grid square they occupy.

36. Fortran source code and executables for Windows are available at http://www.epa.gov/scram001/
dispersion_prefrec.htm. I use AERMOD version 13350 compiled using Intel Fortran Compiler 15.0
for Linux and run on the Odyssey cluster supported by the FAS Division of Science, Research
Computing Group at Harvard University.
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6 Results

6.1 Event Study of the Crisis’s Effects
Figure 6 plots the effects of the Crisis over time on both house prices and pollution
exposure. This provides a visual test of the common trends assumption and the
credibility of the natural experiment. It plots the estimated π̂y coefficients from the
equation

Yit = ∑
y6=2000

(
aermod_prei×δy

)
πy +αi +δt +∑

k
γ1k ·wik · t +∑

k
γ2k ·wik · t2 + εit

where Yit is either ln pit (the reduced form) or aermodit (the first stage) and all other
controls are the same as in Equation (7). Each πy captures the effect of the Crisis
on house prices or pollution exposure in year y relative to the omitted year, 2000.
With a valid natural experiment, we should see no effect before the Crisis (π̂y ≈ 0
for y < 2000) with a sharp change immediately following it.

Figure 6 is strong evidence that the Crisis is a valid natural experiment, with
little effect on exposure and prices before the exogenous shock of the Crisis and
sharp effects immediately following the shock. The effect on house-level pollution
exposure over time (the dashed line) unsurprisingly mimics the behavior of firm
emissions shown in Figure 5, with a flat profile before the Crisis, a sudden drop right
after the Crisis, and a slight negative trend going forward as firms complete their
abatement solutions. The effect on house prices (the solid line) is a mirror image
of the exposure effect, showing a flat profile before the Crisis followed by a sudden
jump in value of houses with improved air quality. This suggests that the instrument
based on aermod_prei is indeed capturing the effects of the Crisis-induced reduction
in exposure rather than other secular changes. For example, if the instrument were
instead picking up secular trends like the beginning of the housing bubble, Figure 6
would instead show a smooth, exponential-like increase in prices.

6.2 Instrumental Variables Estimates
Table 1 presents estimates of the causal effect of pollution exposure on house prices.
The reduced-form estimates in columns 1 and 2 show that the Crisis-induced pol-
lution reduction significantly increased house prices. Column 1 is the preferred
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specification based on Equation (7) with house-level fixed effects, year-quarter ef-
fects, and trends in local geographic and demographic characteristics. The coefficient
of 0.0033 implies that every unit of initial exposure (i.e., treatment intensity in the
Crisis) increased the sale price of a home by 0.33%. This coefficient is also precisely
estimated, with a t-statistic of 3.94 (p-value less than 0.0001). Multiplying this
estimate by the average treatment intensity, 5.331, gives the effect of the Crisis on
the average house’s value: 1.8% or $7,790 for the average home sold in 2000.

Column 2 is a robustness check for the preferred specification in column 1
which relaxes the house-level fixed effects in favor of block group fixed effects and
explicit controls for house quality: interior square feet, lot size, number of bedrooms,
and number of bathrooms. While unable to control for all time-invariant house
characteristics, this specification allows for the inclusion of properties only sold
once during the sample period and for the estimation of the aermod_prei main effect
which is otherwise subsumed by the house-level effects. The estimate of the Crisis’s
effect in Column 2, 0.0033, is essentially the same as in column 1, and the coefficient
on aermod_prei, -0.0027, is negative, confirming that properties initially exposed to
more pollution were worth less.37

Column 3 presents the first-stage estimate that corresponds to the reduced form
presented in column 1. The estimated coefficient of -0.4420 implies that for every
unit of exposure to NOx emissions in 1995–1996 (the basis for aermod_prei), roughly
43% of that exposure was removed by the Crisis and RECLAIM. This is consistent
with the firm-level behavior shown in Figure 5, which shows a decrease in firm-level
emissions of a similar magnitude. This relationship between firm-level emissions and
house-level exposure is non-trivial because it depends on the geographic distributions
of firms and houses, the differential behavior of firms, and meteorology. For example,
a decrease in average emissions could be driven by firms far from population centers.
This estimate shows that the exposure to houses did change significantly due to the
Crisis and RECLAIM.

Column 4 presents two-stage least squares (2SLS) estimates of the causal effect

37. The correlation of initial pollution exposure and neighborhood characteristics and how neigh-
borhoods changed demographically in response to the air quality improvement following the Crisis is
the focus of Sullivan (2017).
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of pollution exposure, with aermodit as the endogenous regressor and aermod_prei×
postt as the excluded instrument. The estimate of -0.0074 is again precisely estimated
(t-stat 3.1, p-value 0.002) and implies that an additional unit of exposure (µg/m3) to
NOx emissions decreases a house’s value by 0.74%. Using the average sale price of
homes in 2000, this translates to a MWTP to reduce exposure of $3,306 per unit.

Columns 5 and 6 are robustness checks on the preferred 2SLS estimate and show
that it is robust to both the choice of instruments and the IV method used. Both
columns replace the variable-intensity diff-in-diff instrument with the event study
instruments used in Figure 6: aermod_prei×δy with year effects δy. Column 6 also
uses LIML instead of 2SLS. These point estimates and standard errors are both
remarkably close to the their counterparts in the preferred specification in column
4, suggesting that neither the choice of instruments nor the choice of IV method is
driving the results.

Table 1 also provides evidence that the estimates do not suffer from significant
weak-instrument bias. The partial F-statistics for both sets of instruments are large,
6,323 and 923, well above the usual rule-of-thumb of 10.38 The LIML estimates
in column 6 provide further evidence against weak instruments because the LIML
estimator is median-unbiased and thus more reliable than 2SLS when instruments
are weak (Stock, Wright, and Yogo 2002). The similarity of the LIML estimate to
the 2SLS results in column 5 does not raise any concern about weak instruments.

Table A3 shows the robustness of the preferred reduced-form and second-stage
estimates to alternative estimates of the standard errors and the inclusion of additional
instruments. Columns 1 through 5 present estimates of the standard errors for
columns 1 and 4 of Table 1 when clustering by Census block group, by tract, and
when using the spatial HAC method of Conley (1999) and Kelejian and Prucha
(2007) with a triangle kernel with bandwidths 0.25 miles, 0.5 miles, 1 mile, and 2
miles.39 Column 6 adds the instrument “uniform_pre×post” where “uniform” is

38. This follows the common practice since Stock and Yogo (2002) and Stock, Wright, and Yogo
(2002). However, the usual rules of thumb from Stock, Wright, and Yogo assume spherical error
terms, so I follow Coglianese et al. (2017) and assume spherical errors when calculating partial F
statistics.

39. For comparison, the median tract in the sample is roughly 0.75 miles across, while a spatial
HAC with a 2-mile bandwidth allows arbitrary correlation within an area 4 miles across.

25



a measure of NOx exposure assuming uniform dispersion within 2 km of the firm
(see Section 6.3) and column 7 adds “Within 2 km of Firm” interacted with post.
These instruments should capture any time variant effects of living near polluting
firms that are not distributed by the wind which may be inflating the coefficients on
pollution exposure. However, Table A3 shows that neither of these variables has any
significant impact.

6.3 Comparison to Standard Methods
Section 2 argues that conventional methods of measuring pollution’s impact will be
biased due to the wind. I test this by re-estimating the effect of the Crisis using these
conventional methods instead of AERMOD.

First, I follow Currie et al. (2015) and estimate a geographic diff-in-diff using a
model similar to Equation (7) but where each house-firm pair is treated separately,
effectively pooling the many firm-level diff-in-diffs:

ln pi f t = neari f ×postt ·β +αi f +XXX itΓΓΓ+ εi f t (8)

where αi f are now house-firm effects instead of house effects; XXX it includes the same
controls as Equation (7); and neari f is a dummy variable for whether house i is
within the chosen treatment radius of firm f . I estimate this model with treatment
and control radii of 1 and 2 miles and again with 2 and 4 miles.

The resulting reduced-form estimates presented in columns 1 and 4 of Table 2
and are small, imprecise, and have different signs. For the 1-mile treatment, the
average effect of the Crisis on log price is 0.0040, less than one fourth the size of
the average effect found using AERMOD, 0.018. This estimate is also imprecise,
with a standard error of 0.0050. The 2-mile estimate in column 4 implies that treated
houses lost value after Crisis and is also imprecisely estimated.

The derivation of geographic diff-in-diff bias in Section 2 predicts that the
first-stage and reduced-form estimates should have the same bias and that, with a
good measure of exposure, the second-stage estimate should be unbiased though
potentially noisy. I test this using the firm-specific exposure measure aermodi f t as
the endogenous regressor. For the 1-mile treatment radius, the biases appear to be
roughly equal. The reduced-form effect is 23.0% of the average reduced-form effect
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found in Table 1, column 1, while the first stage effect is 23.4% of its AERMOD-
based equivalent. Consequently, the second stage coefficient, -0.0077, is very similar
to the estimates in Table 1. However, this estimate is very imprecise and it is difficult
to draw a strong conclusion about the estimates’ similarity. For the 2-mile treatment,
the reduced-form and first-stage estimates are wrong-signed, making comparison
difficult. Ignoring signs, the ratios of reduced-form and first-stage effects are 0.07
and 0.01, respectively.

I also estimate geographic diff-in-diffs using interpolated NOx and ozone from
pollution monitors and present the results in Table A4.40 None of the reduced-form
or second-stage estimates is statistically significant, with many having the wrong
sign and changing dramatically with treatment radius and choice of instruments.

The second conventional research design uses radial kernel densities to map firm
emissions to local exposure. This is similar to the approach taken by Banzhaf and
Walsh (2008), who use the equivalent of a uniform kernel with a 1 mile (1600 meter)
bandwidth. I use a triangle kernel with 5-km bandwidth and a uniform kernel with
2-km bandwidth as the proxy for the spatial distribution h instead of AERMOD.41

In both cases, the sample is restricted to houses within 5 km of a firm. The kernel
approach should theoretically be an improvement over the geographic diff-in-diff
because it can account for neighboring firms’ overlapping treatment areas. Once
again, the estimation equation is Equation (7), except that the exposure measure and
instruments are constructed using the relevant kernel density instead of AERMOD.

The estimates, presented in Table 3, are generally small, imprecise, and some-
times wrong-signed. Columns 1 and 4 show the reduced-form estimates for the
triangle and uniform kernels, respectively. The triangle estimate has the wrong sign
while the uniform estimate is imprecise and small, implying an average treatment
effect of only 0.01 percent. The first-stage estimates in columns 2 and 5 are very
similar to their AERMOD counterpart due to the mechanical relationship between
firm emissions and these exposure variables. Columns 3 and 6 show the second-stage

40. As before, the interpolation is calculated using inverse distance weighting using monitors with
full NOx and ozone coverage during the sample period that are no more than 15 km from the point
being interpolated.

41. To make the unit-less kernel-based variables comparable to the AERMOD measure, I re-scale
them so that their sample average is the same magnitude as the sample average of aermodit .

27



results, which mirror the reduced-form results.

6.3.1 Summary and Comparison to Prior Research

Table 4 presents the average treatment effects and/or MWTP implied by the estimates
in Tables 1 to 3 along side previously discussed estimates from the literature. This
allows for a more direct comparison across the various methods. The first column
lists the model or paper that generated the estimate; the second column lists the
estimated effect of the Crisis on average house prices for models from this paper; and
the third column lists the estimated MWTP for a 1 µg/m3 reduction in pollution. Note
that there are no MWTP estimates from the geographic diff-in-diff models because
these models provide no measure of pollution exposure and thus no second-stage
estimates.

Panel A gives the preferred AERMOD-based values from Table 1. Panel B gives
the values for the geographic diff-in-diffs (Table 2) and the kernel-based dispersion
(Table 3), which are generally small, statistically insignificant, and unstable across
specification. With the geographic diff-in-diff, moving from a 1- to 2-mile treatment
radius flips the sign of the estimate. The same happens in the kernel-based estimates
when switching kernels. Taking the most positive estimates from each column, the
largest conventional estimates for average price effect and MWTP are 23% and 4%
of the AERMOD estimates, respectively.

Panel C gives the values from past literature. These estimates are comparable in
magnitude to the most positive MWTP estimate from Panel B, though unlike Panel B,
they are statistically significant with p-values no greater than 0.05. The estimates are
also very close to one another, regardless of whether OLS or instrumental variables
methods were used.

While Table 4 allows for a more apples-to-apples comparison of the various point
estimates, care should be taken when considering estimates from prior literature
because they represent the MWTP to reduce different pollutants. The pollutant
of interest in Smith and Huang (1995) and Chay and Greenstone (2005) is TSP;
in Bayer, Keohane, and Timmins (2009) it is PM10; and in this paper it is NOx

emissions, which primarily take the form of NOx or ozone. The market response to
these pollutants could differ by the pollutants’ toxicity and salience. However, the
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relative toxicity of NOx emissions and particulate matter suggest that the biological
harm of particulate matter is at least that of NOx emissions, if not dramatically
greater (see, e.g., Muller and Mendelsohn 2009). In addition, when NOx emissions
take the form of ozone, they are significantly less visible than most particulate matter.
It is also true pollutants are highly correlated, and a decrease in one pollutant is likely
being accompanied by a decrease in other pollutants, causing estimates of the effect
of specific pollutants to capture some of the effects of other pollutants. However, the
abatement solutions used by firms in this sample specifically target NOx emissions
through filtration, as opposed to, e.g., more efficient fuel usage that would decrease
all pollutants. These facts suggest that the MWTP for NOx estimated here is likely a
lower bound for the MWTP to reduce particulate matter. Nevertheless, comparing
estimates for different pollutants is difficult and a more reliable way to test for bias
in conventional methodology is to compare methods using the same sample, such as
the AERMOD estimates in Panel A and the conventional estimates in Panel B.

7 Conclusion
An accurate estimate of the social value of clean air is critical for setting efficient
air quality policy. This paper presents evidence that inaccurate measures of air
pollution exposure can lead to severely biased estimates of pollution’s effects, even
when a natural experiment is used. When using the atmospheric dispersion model
AERMOD to measure exposure, I find that the California Electricity Crisis of 2000
significantly lowered exposure to NOx emissions in metro Los Angeles and caused
houses with improved air quality to increase in value by 1.8% on average. This price
increase implies a MWTP to reduce exposure to NOx emissions of $3,306 per µg/m3.
When using conventional measures of pollution exposure, I find no statistically or
economically significant effect.

A significantly higher social value of clean air has sweeping implications for
air quality policy. For instance, the RECLAIM cap-and-trade program has long
been questioned on cost-benefit grounds. However, the MWTP above implies that
reducing emissions in SCAQMD from 1995 levels to the 2005 RTC cap is worth
roughly $524 million annually, far more than the estimated annual abatement costs
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of $39 million.42 EPA’s recent multi-year effort to tighten ozone standards is another
example of a policy that was incorrectly undervalued and thus met stiff resistance
on cost-benefit grounds.43 More generally, the social welfare calculus for power
generation is more likely to favor cleaner sources like solar and nuclear over coal.
By extension, the co-benefits of reducing carbon emissions are also greater.

42. Abatement costs based on SCAQMD (2000) and do not consider other costs like worker
displacement. SCAQMD asks firms to report how many jobs are lost or gained due to RECLAIM
every year. Through 1999, firms reported a total net employment change of −109 workers which they
attributed to RECLAIM (SCAQMD 2000). See Fowlie, Holland, and Mansur (2012) for summary of
debate on RECLAIM.

43. See, e.g., “Obama Asks EPA to Pull Ozone Rule,” Wall Street Journal, September 3, 2011;
“EPA Sets New Ozone Standard, Disappointing All Sides,” New York Times, October 1, 2015.
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Figure 1: Exposure to NOx from a Single Firm, 1999
Notes: Colors show average exposure to NOx emitted by the Scatterwood Generating
Stations, Los Angeles, in 1999. Exposure is calculated using AERMOD as described in
Section 5. Black “X” marks the location of the firm. Circles mark area within 1 and 2 miles
from the firm.

Figure 2: Exposure to Industrial NOx Emissions, 1999
Notes: Colors show average exposure to NOx emissions from industrial sources in 1999.
White circles mark the location of pollution monitors for NOx in operation 1997–2005.
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(a) Inverse Distance Weighting (b) Kriging

Figure 3: NOx Exposure as Interpolated from Monitor Locations, 1999
Notes: Figures plot interpolations under the hypothetical that Figure 2 represents true
exposure to NOx emissions but data is only available at monitor locations marked by white
dots. These monitors are actual NOx monitors in operation during sample period (1997–
2005) that would be used for interpolation. Color scale for exposure intensity is the same as
in Figure 2. Panel (a) plots values interpolated via inverse distance weighting (IDW) with
the restriction that monitors are not used (given zero weight) if they are farther than 15 km
from the point being interpolated. Panel (b) plots values interpolated via simple Kriging
using an exponential variogram.
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Figure 4: AERMOD and Pollution Monitor Readings Over Time
Notes: Figures plot exposure to NOx as predicted by AERMOD (solid lines) at the two
monitor locations shown in Figure 2, as well as the actual monitor readings for each lo-
cation (dashed lines). Plotted values are the average from the fourth quarter to minimize
measurement issues due to atmospheric chemistry (see Section 3).
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Figure 5: Scaled Firm Emissions of NOx by Firm Type
Notes: Firm emissions are scaled by firm’s own maximum emissions. Sample is restricted to
firms that operated in at least 8 quarters.
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Figure 6: Crisis’s Effect on Pollution Exposure and House Prices
Notes: Plotted points are coefficients from a regression of the specified outcome on
aermod_pre interacted with year dummies (year 2000 omitted). Sample and other con-
trols as in Table 1, column 1. Average value of aermod_pre is 5.331.
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Table 1: Effect on House Prices of AERMOD-measured Pollution Exposure

(1) (2) (3) (4) (5) (6)
ln Price ln Price Aermod ln Price ln Price ln Price

Aermod -0.0074∗∗∗ -0.0073∗∗∗ -0.0073∗∗∗

(0.0024) (0.0023) (0.0024)
Aermod_pre×post 0.0033∗∗∗ 0.0033∗∗∗ -0.4420∗∗∗

(0.0008) (0.0005) (0.0764)
Aermod_pre -0.0027∗∗

(0.0012)

Fixed Effects BG House House House House House
Method OLS OLS OLS 2SLS 2SLS LIML
IV set Post Annual Annual
κ 1 1 1.0003
1st Stage F-stat 6506 951 951
R2 0.948 0.865 0.910
N 41,783 118,565 41,783 41,783 41,783 41,783

Notes: Controls include listed fixed effects, year-quarter effects and quadratic time trends by local geography
and year 2000 SES variables (see Section 4.3). “Post” IV is aermod_pre×post, “Annual” IV is aermod_pre
interacted with year dummies. First-stage F-stat assumes homoskedasticity. Column 2 also includes controls
for lot size, bedrooms, bathrooms, interior square feet. Sample average of aermod_pre is 5.331. Standard
errors, clustered at 100-m grid, in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 2: Geographic Diff-in-diff Estimates of Crisis’s Effect on House Prices

(1) (2) (3) (4) (5) (6)
0–1 vs. 1–2 miles 0–2 vs. 2–4 miles

ln Price Aermod ln Price ln Price Aermod ln Price

Near×post 0.0040 -0.5125∗∗∗ -0.0016 0.0225
(0.0050) (0.0578) (0.0022) (0.0221)

Aermod -0.0077 -0.0730
(0.0097) (0.1205)

Method OLS OLS 2SLS OLS OLS 2SLS
R2 0.9454 0.9085 0.9417 0.9095
N 92,901 92,901 92,901 431,634 431,634 431,634

Notes: Unit of observation is house-firm-quarter. Near=1 for houses closer to firm,
e.g., 0–x miles as specified. Controls include house-firm effects and other controls as in
Table 1, column 1. Standard errors, clustered by 100-m grid, in parentheses: *** p < 0.01,
** p < 0.05, * p < 0.1.
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Table 3: Effect on House Prices of Kernel-measured Pollution Exposure

(1) (2) (3) (4) (5) (6)
ln Price Triangle ln Price ln Price Uniform ln Price

Triangle_pre×post -0.0002 -0.3830∗∗∗

(0.0007) (0.0112)
Triangle 0.0004

(0.0019)
Uniform_pre×post 0.0001 -0.4065∗∗∗

(0.0003) (0.0215)
Uniform -0.0003

(0.0008)

Method OLS OLS 2SLS OLS OLS 2SLS
R2 0.948 0.932 0.948 0.905

Notes: N=41,783. Sample averages of triangle_pre and uniform_pre are 2.303 and 1.681, respectively.
Controls as in Table 1, column 1. Standard errors, clustered by 100-m grid, in parentheses: *** p < 0.01,
** p < 0.05, * p < 0.1.

Table 4: Comparison of Capitalization Estimates Across Models

Model/Paper Crisis’s Effect MWTP
on Avg. Price

Panel A. Wind-based method
(1) Aermod $7,860∗∗∗ $3,306∗∗∗

Panel B. Conventional methods
(2) Geo diff-in-diff (1 mile) $1,787
(3) Geo diff-in-diff (2 miles) −$715
(4) Triangle kernel −$206 −$179
(5) Uniform kernel $45 $134

Panel C. Prior research on other pollutants
(6) Smith and Huang (1995) $260∗∗

(7) Chay and Greenstone (2005) $191∗∗

(8) Bayer, Keohane, and Timmins (2009) $130∗∗∗

Notes: For estimates from other papers, the authors’ preferred, most comparable estimate is used.
Source for Row (1): Table 1, cols 1 & 4. (2): Table 2, col 1; (3): Table 2, col 4; (4): Table 3, cols 1 &
3; (5): Table 3, cols 4 & 6; (6): Smith and Huang (1995), abstract, meta-analysis mean MWTP for
TSP; (7): Chay and Greenstone (2005), Table 5A, col 4, MWTP for TSP; (8): Bayer, Keohane, and
Timmins (2009), Table 6, col 2, MWTP for PM10.
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Appendix

A Monitor cross-validation with no spatial correla-
tion

Let xit = δt + εit , Var(δt) = σ2
δ

, and Var(εit) = σ2
ε where εit is mean-zero and i.i.d.

Also let x̃mt = ∑m′ 6=m wmm′xm′t where the interpolation weights wmm′ are constructed
such that ∑m′wmm′ = 1.

The conventional cross-validation correlation is

corr(x̃mt ,xmt) =
1[(

1+ σ2
ε

σ2
δ

∑m′w2
mm′

)(
1+ σ2

ε

σ2
δ

)] 1
2
> 0

Note that corr(x̃mt ,xmt)→ 1 as σ2
ε /σ2

δ
→ 0. With large within-year variation but

little cross-year variation in wind patterns or firm behavior, this ratio of variances
could be very low, leading to a large but erroneous cross-validation correlation.

For the correlation conditional on time effects, we have

cov( x̃mt ,xmt |δt) = E
[(

x̃mt−E
[
x̃mt | δt

])(
xmt−E

[
xmt | δt

])∣∣∣δt

]

= E


 ∑

m′ 6=m
wmm′εm′t

εmt

∣∣∣∣∣∣δt

= ∑
m′ 6=m

wmm′E[εm′tεmt ] = 0

B Firm Data Construction

B.1 Geocoding
The accurate geocoding of pollution sources is critical when analyzing the effect
these sources have on the surrounding population. Administrative records on the
latitude and longitude of each smoke stack operated by the firm would be the
ideal data. Regulators often collect this data for the explicit purpose of dispersion
modeling, and though SCAQMD does collect this data, they are unavailable for
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public use (SCAQMD 2015b). In lieu of direct geographic data for each smoke stack,
I follow the literature and geocode the firms’ street addresses, taking care to use the
actual operating address of the firm and not corporate or mailing addresses which
are often listed in databases. For large firms and firms that match to interpolated
street addresses instead of parcel centroids, I double-checked the coordinates using
satellite photos from Google Maps to make sure the geographic point that represents
the firm is reasonably close to the actual smoke stacks.44

B.2 Facility ID
SCAQMD assigns each facility an ID number; however, a facility may have more
than one ID number in the data, both over time and cross-sectionally. This is
primarily a concern when matching firms to the NEI, as described in Appendix B.3.

A facility’s ID can change under a number of circumstances: the facility is sold,
changes its name, or some part of its address changes. For the most part, these
changes occur for superficial reasons, e.g., a zip code or street suffix is changed. To
construct unique facility ID’s, I flagged every pair of facilities less than 400 meters
apart and visually inspected satellite photos and emissions data for every cluster
of neighboring facilities. First, firms were merged if they occupied the same or
neighboring parcels and shared breaks in their time series of emissions. For example,
Facility A emits 25 tons per quarter from 1994 to 1999Q3 and then is missing from
the data, while Facility B, located at the same parcel of land as A, enters the data
in 1999Q4 and begins emitting 25 tons per quarter. Facilities were also merged if
they had similar names and occupied the same or neighboring parcels of land. These
merges were verified by checking whether or not the firms appeared separately in
the NEI.

B.3 Stack Data from the NEI
Data for each firm’s smoke stacks is taken from the National Emissions Inventory
(NEI) from 1999 and 2002. Besides the smoke stack parameters, the NEI also has
data on firm’s name, address, SIC, and the equipment’s SSC, and the estimated

44. This is potentially important because the firm’s “store-front” address right on the street is often
at the edge of the property, far away from the smoke stacks. Using unchecked street addresses can
introduce significant errors (1–2 km) for firms that occupy large parcels of land.
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emissions by pollutant for each stack.45 It also includes the ID number assigned to
the facility by state-level regulators. For SCAQMD firms, this “state ID” consists of
a county code, an air basin code, an air district code, and the SCAQMD-assigned
facility ID. Using this reconstructed ID, I was able to match most facilities in the
SCAQMD emissions data to the NEI using either their own facility ID or an ID from
a facility I had previously matched to it as described in section B.2. I used the 2002
NEI data whenever possible, falling back to the 1999 database when necessary. For
facilities whose ID’s did not match either dataset, I tried to match them using firm
address and name. Firms that still did not match were almost all small firms that
had ceased to exist before the NEI 1999 data was collected. These firms should
have little impact on the overall results and were dropped. For matched facilities, I
verified that individual stacks were not duplicated.

Many of the stack parameters in the NEI are flagged as imputed values. The
imputation process was not well documented, so I re-imputed them using the median
stack parameters from all non-imputed stacks in the SIC and SCC group. Finally,
when passing the stack parameters to AERMOD, I weighted each stack according to
its reported emissions in the NEI.

45. The Source Classification Codes (SCC) for point pollution sources are a hierarchical index used
by the EPA that categorize pollution-generating equipment by combustion type, fuel type, and size. It
is analogous to the hierarchical SIC and NAICS industry codes.
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Figure A1: Emissions, Permits, and Permit Price under RECLAIM
Notes: “Total RTCs” is the number of RTCs expiring in the calendar year. “Price” is the
average of all arms-length transactions in a month across all RTC vintages.
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Figure A2: Scaled Firm Emissions of NOx by Firm Type, Quarterly
Notes: Firm emissions are scaled by firm’s own maximum emissions. Sample is restricted to
firms that operated in at least 8 quarters.
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Figure A3: Monitoring Station and Firm Locations
Notes: Firms and meteorology stations are restricted to those that contribute to the main
regression sample. Pollution monitors restricted to those with constant NOx coverage over
1997–2005.
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Table A1: House Summary Statistics

Never Sold Sold Once Repeat Sales
Pre Post Pre Post

Sale Price 394,839 541,228 420,912 603,347
(284,955) (357,514) (304,854) (396,748)

Lot Size 6,544 6,617 6,381 6,245 6,010
(6,662) (7,173) (6,793) (5,567) (4,926)

Square Feet 1,537 1,611 1,534 1,574 1,492
(651) (722) (690) (710) (656)

Year Built 1950 1952 1950 1951 1950
(15.24) (15.61) (15.77) (16.97) (16.79)

Bedrooms
1 0.01 0.01 0.01 0.01 0.02
2 0.23 0.22 0.24 0.25 0.27
3 0.48 0.48 0.49 0.49 0.49
4 0.22 0.23 0.21 0.21 0.19
5+ 0.05 0.05 0.05 0.04 0.03

Bathrooms
1 0.34 0.29 0.33 0.31 0.35
2 0.47 0.47 0.46 0.45 0.45
3 0.13 0.16 0.13 0.15 0.13
4+ 0.03 0.04 0.04 0.05 0.04

Sold in Quarter
1 0.19 0.22 0.20 0.21
2 0.28 0.27 0.29 0.28
3 0.28 0.28 0.28 0.27
4 0.25 0.24 0.24 0.23

Times Sold 2.14
(0.38)

Total Properties 275,218 84,041 19,545

Notes: Summary statistics from regression sample as described in Section 5. Table lists
sample means with standard deviations given in parentheses.
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Table A2: Firm Summary Statistics by Industry
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Products

All Firm
s

Mean Emissions (tons)
1998 524.8 212.6 16.8 31.1 38.8 45.5 39.7 33.7 62.0
2002 380.9 56.1 11.1 8.9 5.7 24.8 37.0 8.8 33.2

Median Emissions (tons)
1998 332.4 120.0 4.8 5.7 14.5 41.0 34.5 28.7 7.2
2002 255.6 42.2 2.9 1.4 3.7 22.4 43.6 9.3 4.1

Industry Share of Total Emissions (percent)
1998 42.6 28.8 18.9 3.6 2.1 1.6 1.4 0.9 100.0
2002 56.1 13.8 23.9 1.9 0.6 1.6 1.8 0.4 100.0

Mean Smoke Stack Characteristics
Height (m) 25.1 37.4 12.3 7.1 19.1 10.6 28.4 19.6 14.9
Diameter (m) 1.3 3.6 0.8 0.4 0.9 0.7 0.9 1.2 1.0
Velocity (m/s) 8.6 20.1 10.8 14.2 12.5 12.5 11.9 9.5 11.7
Temp. (°C) 292.8 231.0 223.0 351.5 191.6 120.9 251.0 271.2 233.7

Mean Dist. to Weather
Monitor (km) 7.0 7.5 6.3 6.2 6.8 5.2 6.1 5.9 6.4

No. of Firms 9 15 150 14 6 4 4 3 205

Notes: Sample of firms is those within 20 km of sample area shown in Figure 2.
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Table A3: Robustness of House Price Estimates using AERMOD-measured Exposure

Cluster by Conley Std. Error w/ Bandwidth Additional Instruments
Block Group Tract 1⁄4 mile 1⁄2 mile 1 mile 2 miles

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Reduced Form
Aermod_pre×post 0.0033∗∗∗ 0.0033∗∗∗ 0.0033∗∗∗ 0.0033∗∗∗ 0.0033∗∗∗ 0.0033∗∗∗ 0.0038∗∗∗ 0.0033∗∗∗

(0.0009) (0.0010) (0.0009) (0.0010) (0.0011) (0.0011) (0.0009) (0.0009)
[0.000] [0.002] [0.000] [0.002] [0.002] [0.003]

Uniform_pre×post -0.0004
(0.0004)

“Near Firm”×post -0.0016
(0.0058)

Panel B. 2SLS
Aermod -0.0074∗∗∗ -0.0074∗ -0.0074∗∗∗ -0.0074∗∗ -0.0074∗ -0.0074∗ -0.0076∗∗∗ -0.0072∗∗∗

(0.0029) (0.0041) (0.0028) (0.0034) (0.0038) (0.0041) (0.0025) (0.0023)
[0.010] [0.072] [0.009] [0.030] [0.053] [0.074]

Notes: Each column is a variation of the preferred specifications. Panel A corresponds to the reduced form in Table 1, column
1, and Panel B corresponds to the 2SLS second stage in Table 1, column 4. Standard errors (in parentheses) and p-values (in
brackets) are calculated as follows. Columns 1 and 2 use standard errors clustered by Census block group and tract, respectively.
Columns 3–6 use SHAC or Conely standard errors with a triangle kernel of bandwidth of 1⁄4 mile, 1⁄2 mile, 1 mile, and 2 miles,
respectively. Columns 7 and 8 use standard errors clustered at 100-meter grid as in Table 1. The median tract in the sample is
roughly 0.75 miles across. A spatial HAC with a 2-mile bandwidth allows arbitrary correlation within an area 4 miles across.
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Table A4: Price Effects with Geographic Diff-in-diff and Interpolation

Panel A. 1-mile treatment, 2-mile control
(1) (2) (3) (4) (5) (6) (7)

ln Price NOx ln Price ln Price Ozone ln Price ln Price

Near×post 0.0037 0.3602 -0.0710
(0.0059) (0.3975) (0.0835)

NOx 0.0102 -0.0079
(0.0197) (0.0049)

Ozone -0.0517 -0.0400
(0.1041) (0.0265)

Method OLS OLS 2SLS 2SLS OLS 2SLS 2SLS
IV Set Post Annual Post Annual
1st Stage F-stat 1.2 2.8 1.1 2.4

Panel B. 2-mile treatment, 4-mile control
(1) (2) (3) (4) (5) (6) (7)

ln Price NOx ln Price ln Price Ozone ln Price ln Price

Near×post -0.0034 -0.0566 0.0490
(0.0026) (0.1474) (0.0333)

NOx 0.0605 -0.0096
(0.1619) (0.0066)

Ozone -0.0698 -0.0031
(0.0726) (0.0073)

Method OLS OLS 2SLS 2SLS OLS 2SLS 2SLS
IV Set Post Annual Post Annual
1st Stage F-stat 0.2 2.1 3.4 22.6

Panel C. 3-mile treatment, 6-mile control
(1) (2) (3) (4) (5) (6) (7)

ln Price NOx ln Price ln Price Ozone ln Price ln Price

Near×post -0.0014 -0.0601 0.1772***
(0.0018) (0.0945) (0.0212)

NOx 0.0229 0.0001
(0.0475) (0.0092)

Ozone -0.0078 0.0048
(0.0103) (0.0053)

Method OLS OLS 2SLS 2SLS OLS 2SLS 2SLS
IV Set Post Annual Post Annual
1st Stage F-stat 0.7 1.4 117.5 52.0

Notes: N for each panel is 76,757; 367,872; and 896,398, respectively. Unit of observation is house-firm-
quarter. NOx and ozone exposure interpolated from monitors using inverse distance weighting. Near=1 for
houses within specified treatment radius. Sample restricted to houses within specified control radius. IV Set
"Post" is Near×post. IV Set "Annual" is Near times year dummies. 1st Stage F-stat assumes spherical errors.
Controls include house-firm effects, year-quarter effects, and quadratic time trends by local geography and
year 2000 SES variables.
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