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Abstract

Compliance with the Clean Air Act’s National Ambient Air Quality Standards
(NAAQS) is determined using local pollution monitors. However, most counties
have zero or one monitor, and monitors may not represent exposure across wide
areas. We use satellite-derived data on fine particulate matter (PM2.5) to revisit the
compliance determinations for the PM2.5 annual NAAQS made in 2015. Mirroring
current regulatory practice, we flag counties as “nonattainment” if they contain
areas that exceed the NAAQS. Comparing the satellite-based list of nonattainment
areas to the official determinations, we estimate that 24.4 million people live in
attainment areas that the satellite data suggest should be nonattainment. We then
estimate how air quality changes in areas targeted by regulators for improvement,
as occurs around ground-based monitors that are designated nonattainment. The
estimates suggest that proper classification would have prevented 5,652 premature
deaths between 2016 and 2017, a welfare gain of $51 billion.
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1 Introduction
The Clean Air Act (CAA) is the foundation of air quality regulation in the United States.

Under the CAA, the US Environmental Protection Agency (EPA) establishes National

Ambient Air Quality Standards (NAAQS) for several air pollutants: PM2.5, PM10, ozone,

NOx, SO2, CO, and lead. The NAAQS themselves are statistics describing concentration

levels over various time horizons, e.g., the three-year daily average or the 98th

percentile of daily maxima over three years. Air pollution monitors across the country

regularly measure concentrations of the regulated pollutants and regulators calculate

“design values” from these measurements to compare against the NAAQS. If a monitor

reports a design value above the NAAQS, the monitor’s jurisdiction (usually the county)

is classified as “nonattainment” for that pollutant standard and is subject to a series of

requirements to bring its design value within the standard.1 Past research has found

that air quality improves significantly faster in nonattainment areas than in attainment

areas, resulting in concomitant health and welfare benefits (see, e.g., Currie et al. 2014;

Bishop, Ketcham, and Kuminoff 2018).

But these air quality standards are only as effective as the EPA’s monitoring network,

which is limited. The majority of US counties lack monitors altogether, and readings at

an air pollution monitor do not necessarily represent concentrations across a wide area

like a county. Of 3,100 counties in the United States, only 651 (21 percent) have any

PM2.5 monitors. Of these, 48 percent have a single monitor. In such cases, standard

practice is to assume that the concentrations registered by that monitor are

representative of concentrations throughout the county. Good monitor placement is

obviously critical to this assumption, but recent research shows that some monitors

appear to be placed in areas of low pollution relative to elsewhere in the county, such as

upwind of major point sources (Grainger, Schreiber, and Chang 2018).

The purpose of this research is to measure how many people live in gaps in the

monitoring network where pollution levels are high but undetected by monitors and

therefore undetected by regulators. We use high-resolution satellite-derived data (∼1

km2) on ground-level PM2.5 concentrations to find counties that are designated as

attainment but contain areas that violate the NAAQS according to the satellite data.

We find that 54 counties in 11 states, home to 24.4 million people, are misclassified

1. There are some additional factors that EPA may consider when making nonattainment designations,
which we describe in more detail in Section 2.1.
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according to satellite data from the time period EPA used to originally assign

attainment designations (2011–2013). Of these, 10.9 million live in counties that do not

contain any PM2.5 monitors. Reclassifying all these misclassified individuals as

nonattainment would more than double the total nonattainment population, currently

23.2 million. We also find that the misclassification rate varies considerably across

demographic groups, with rural individuals and black individuals the most likely to be

misclassified.

One consequence for these misclassified counties is that their residents did not

enjoy the same accelerated improvements in air quality that properly classified

nonattainment counties did after their nonattainment designation. We estimate the

value of these forgone health benefits by measuring the effect of a new nonattainment

designation on pollution concentrations near a monitor. Auffhammer, Bento, and

Lowe (2009) find that when regulators take action to bring their counties into

attainment, they specifically target high-pollution monitors—the immediate cause of

the nonattainment designation—for improvements. We measure the effect of this

targeting after the 2015 nonattainment designation using a difference-in-differences

design with monitor data and find that PM2.5 around targeted monitors (monitors over

the NAAQS in nonattainment counties) decreased by 2.3 µg/m3 more than it did

around attainment monitors, which we take to be the counterfactual of targeted

monitors absent the regulatory intervention. Untargeted monitors in nonattainment

areas (monitors that did not exceed the NAAQS) also saw relative decreases, though

smaller than those of targeted monitors.

To calculate the social benefits of using the satellite data in the regulatory process,

we consider the hypothetical where local regulators target all areas that exceed the

NAAQS instead of just those areas exceeding the NAAQS according to ground-based

monitors. Using a standard concentration-response estimate from Lepeule et al. (2012)

and the estimated effect of regulators’ targeting of monitors, we calculate the excess

mortality due to misclassification. We estimate the decrease in PM2.5 that misclassified

counties would have experienced had they been properly classified and use our

estimates to calculate the number of premature deaths that would have been avoided.

We find that improved air quality would have prevented 5,652 premature deaths in

misclassified areas between 2016 and 2017. Using the value of a statistical life (VSL),

this would result in $51 billion in benefits to misclassified counties had states acted as

quickly to reduce PM2.5 levels in these areas as they have in nonattainment areas.
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2 Air Quality Regulation with Sparse Monitoring

2.1 Background on the Clean Air Act

The Clean Air Act (CAA) of 1970 and its subsequent amendments form the basis of

current air quality regulation in the United States (Revesz 2015).2

The CAA directs the administrator of the EPA to issue NAAQS for certain pollutants.

Limits must be imposed on air pollutants that “may reasonably be anticipated to

endanger public health or welfare” (42 USC § 7408(a)(1)(A)), and these limits should be

set to “protect the public health” with “an adequate margin of safety” (§ 7409(b)(1)).3

The NAAQS are supposed to be reviewed and possibly revised no later than every

five years, although this schedule is rarely met. These assessments are made in

consultation with an independent scientific review committee, the Clean Air Scientific

Advisory Committee (CASAC), which provides scientific and technical advice.

The current primary standards for PM2.5 were set in 2012 as (1) an annual average of

no more than 12 micrograms per cubic meter (µg/m3) (down from 15 µg/m3 in 2005)

and (2) a 98th percentile of daily readings no more than 35 µg/m3 (unchanged from

2005). Both metrics are calculated using the three most recent years of monitor data. As

we discuss further in Section 5, this study focuses on the annual standard of 12 µg/m3.

Once a NAAQS is established for a pollutant, each state formally recommends to

EPA which areas (generally counties) should be classified as in attainment with the

NAAQS, which should be classified as nonattainment areas (§ 107(d)(1)), and which are

nonclassifiable (effectively attainment) areas. The state is required to use the latest

three years of monitoring data to do this, but it also may use atmospheric modeling,

emissions inventories, and other tools.4 States also identify areas that contribute to

2. In general, see Revesz (2015), chapter 5, for detailed history and review of air quality regulation in
the United States at the federal level.

3. § 7408(a)(1)(B) also requires that the presence of the pollutant be due to “numerous or diverse
mobile or stationary sources.” The public health standard prescribed in § 7409(b)(1) is known as the
“primary” standard. § 7409(b)(2) provides for “secondary” standards that “protect the public welfare.”
Welfare “includes, but is not limited to, effects on soils, water, crops, vegetation, manmade materials,
animals, wildlife, weather, visibility, and climate, damage to and deterioration of property, and hazards
to transportation, as well as effects on economic values and on personal comfort and well-being” (§
7602(h)). Note, however, that the costs of meeting the standards may not be considered when setting
standards.

4. When the PM2.5 standards were set in 2012, EPA directed states to use air quality monitoring data
from 2010 through 2012 in their initial recommendations for nonattainment areas and said it would use
data from 2011 through 2013 in its final determination if 2013 data were available in time.
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downwind air quality violations and include them in their nonattainment

recommendations. EPA examines the state submission and then makes its

determination on nonattainment designations, which states can appeal.

The CAA also permits reclassifications of an area’s status as conditions change.

Most reclassifications are made after states or other groups petition to move from

nonattainment status to attainment. EPA can also reclassify in the other direction on

its own or if asked to by petitioners, but this rarely happens. EPA data show that only

one area has ever been reclassified from attainment status to nonattainment for any

PM2.5 standard.5

Once an area is officially designated nonattainment, the state or states in which the

area is located must submit a state implementation plan (SIP) to EPA that outlines how

the NAAQS will be met (e.g., what restrictions will be placed on which industries in

which parts of the state). Polluters in nonattainment areas face more stringent

regulations than those in attainment, such as a requirement to use the best available

control technology. Areas with more severe nonattainment designations face tighter

restrictions but have longer deadlines to reach attainment. States that continually fail

to make “reasonable further progress” in reaching attainment may face federal funding

sanctions or other consequences. Understanding the schedule and speed of

nonattainment areas in reaching attainment is important when we estimate the health

benefits of making proper designations.

2.2 Problems with a Limited Network of Air Pollution Monitors

The NAAQS and the attainment designations depend on EPA’s pollution monitors to

provide an accurate measure of how much pollution people are exposed to. However,

there are several problems with using a limited network of monitors to measure

exposure to a spatially dispersed population. The fundamental issues are that (1) air

pollution varies significantly over short distances, with spikes around every factory,

every road, and every refinery;6 and (2) pollution can travel long distances from its

source. As such, the correlation between a monitor’s readings and concentration on the

ground decays quickly with distance; the farther you get from a monitor, the less the

5. Pinal County, Arizona, was reclassified in 2011 as nonattainment with the PM2.5 2006 rule (24-hour
standard) two years after initial classifications were made for that rule in 2009. Reclassification from
attainment to nonattainment for any pollutant is rare. It has happened only 59 times across all 13 criteria
pollutant standards. Of these, 34 percent were changes to counties’ SO2 status (2010 rule) and occurred
in the last three years.

6. See, e.g., Hu et al. (2009).
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monitor can tell you. But in 2015, 79 percent of counties did not have a PM2.5 monitor,

10 percent had one monitor, 5 percent had two monitors, and 6 percent had three or

more.

In addition to physical problems of measuring pollution, there are two problems

with regulatory air pollution monitors that arise because air pollution is generated by

economic activity. The first problem is Goodhart’s law: once a metric of economic

activity becomes a regulatory target, it is no longer a good metric of the underlying

activity. This is because economic actors may adapt their behavior to affect the metric,

like when a teacher changes his curriculum to better fit the standardized tests used to

evaluate his performance. For air pollution, this “teaching to the test” could happen in

a number of ways: strategically placing monitors in less-polluted parts of the county,

strategic timing of abatement by polluters when monitors are in operation, or the

gradual relocation of polluters over time from locations upwind of monitors to

locations downwind. Grainger, Schreiber, and Chang (2018) present evidence of

strategic monitor placement. Zou (2018) presents evidence that firms reduce their

pollution on days that PM2.5 and PM10 monitors are in operation, since some monitors

operate only on select days and their schedule is published in advance.7 Our paper

does not test for these problems directly, but our results are likely driven in part by

them.

The second problem is that monitors are fixed in space and time, while the location

of pollution is constantly changing. A pollution monitor provides a sample

concentration from a single point in what could be a large area with varying

topography, wind conditions, traffic patterns, and density of industry. Since air quality

regulation is ultimately aimed at improving health, how people, pollution, and

polluters are differentially distributed across space cannot be ignored. Furthermore,

none of these distributions are static. As polluters in different locations change their

polluting behavior and as establishments relocate or open for the first time, the spatial

distribution of emissions changes, and in turn the overall exposure to nearby residents

changes. As neighborhoods grow in some parts of a city and shrink in others, overall

exposure changes. As the local climate becomes hotter, airborne pollutants react in

different ways and total exposure changes. Meanwhile, the monitor observes the air at

7. Intermittent operation is primarily a problem with older monitors and PM10 monitors. In our
sample, 56 percent of PM2.5 monitors gathered data on fewer than 121 days in 2015, and 23 percent of
those gathered data on fewer than 80 days.
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the same physical location and is blind to all these changes. If a monitor initially

corresponds to the median concentration in a county, a year later it may correspond to

the 40th percentile, the 60th percentile, or some other order statistic from the

population exposure distribution.

These problems together motivate a closer look at how well the monitors in the

United States measure resident exposure to air pollution and, in turn, at whether the

process of designating areas can be improved. A natural next question is ask is whether

the county is the best unit of designation. Given how much pollution can vary over

short distances, it may be more efficient to determine attainment status for areas

smaller than the county. This would reduce the number of people living under a

nonattainment designation who themselves have air quality within the NAAQS.

However, abatement becomes harder at smaller scales—imagine a single residential

neighborhood or apartment building being designated nonattainment and tasked with

reducing their local pollution. This problem of the optimal unit of designation is

separate from whether satellite data can improve the existing regulatory system. As

such, we leave it for a future paper.

3 Research Design
Are there areas exceeding the NAAQS that EPA’s monitor network has missed? What

might the mortality benefits have been had these areas been correctly classified as

nonattainment?

To answer the first question, we compare the satellite-derived data on ground-level

PM2.5 with official nonattainment designations to flag census blocks which (1) have

satellite PM2.5 readings over the NAAQS and (2) are classified as

attainment/unclassifiable. We refer to counties with any such areas as “misclassified,”

since they would have been classified as nonattainment had EPA’s monitor network

had the same spatial coverage as the satellite data, i.e., one monitor for every square

kilometer.

Our primary answer to the second question takes a two-step approach. First, we

estimate the effect that regulators have on local air quality when they target an area for

improvements. A nonattainment designation pushes local regulators to lower pollution

in order to get their county to attainment status. Past research has found that

regulators can be effective at targeting monitors that cause their county to be in

nonattainment. As Auffhammer, Bento, and Lowe (2009) observe, regulators in
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nonattainment areas have less incentive to target monitors that are not over the NAAQS

because the nonattainment designation depends on readings at the highest monitor.8

We take an empirical approach similar to that of Auffhammer, Bento, and Lowe (2009);

Grainger (2012); and Bento, Freedman, and Lang (2015) to estimate the effect of PM2.5

nonattainment status on violating monitors. We estimate a difference-in-differences

regression to measure the effect on PM2.5 concentrations over time for monitors in

nonattainment areas that register readings over the NAAQS (termed Group I) versus

monitors in nonattainment areas that register concentrations below the NAAQS

(termed Group II) versus monitor readings in attainment areas (termed Group III):

Pm t =β1

�

Nonattainmentm ×Over NAAQSm ×postt

�

+

β2

�

Nonattainmentm ×Under NAAQSm ×postt

�

+

δt +δm + εm t

(1)

where Pm t is the pollution reading for monitor m at time t . The indicator variables δt

and δm control for year and monitor effects. Nonattainment and “over NAAQS” status

are taken from the year 2015, the first year nonattainment determinations were made

for the 2012 PM2.5 rule. Here β1 captures the change in targeted monitors in

nonattainment areas (Group I) relative to changes in attainment monitors (Group III).

Likewise β2 captures the change in untargeted monitors in nonattainment areas

(Group II) relative to Group III. Because these monitors are not targeted, we would

anticipate β2 to have a smaller magnitude than β1, with much of the effect on

untargeted monitors coming as a side effect from efforts to reduce pollution at the

nearby targeted monitors. (Because a counties in our sample were not designated

nonattainment without a violating monitor, all Group II monitors must have a Group I

monitor in the same county.)

We invoke the usual parallel trends assumption that, absent the regulatory

intervention, the trends of Group I and Group II monitors would have continued to

follow the trend of Group III monitors. Under this assumption, β̂1 and β̂2 measure the

casual effect of regulators’ response to a nonattainment designation.

8. “The federal regulation creates an incentive for the local regulator to closely track the monitors
that put the county at ‘risk’ of becoming out of attainment. The regulator then allocates effort in terms
of monitoring and enforcement activities to the different monitors by comparing the future costs of
getting out of attainment to the present costs associated with the reduction in the emissions around
‘risky’ monitors. The resulting equilibrium is a schedule of heterogeneous monitoring and enforcement
efforts such that more effort is allocated to dirtier monitors” (Auffhammer, Bento, and Lowe 2009, p. 17).
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After estimating β̂1 and β̂2, we consider a scenario where federal regulators have

monitors for every square kilometer. This gives local regulators the incentive to target

all areas that exceed the NAAQS instead of one or two specific points as in the current

case with sparse monitoring. We assume that if areas over the NAAQS in misclassified

counties had been correctly classified, they would have experienced declines in PM2.5

similar to those experienced by targeted monitors after their nonattainment

designation, i.e., β̂1. Similarly, we assume areas under the NAAQS in misclassified

counties would get the spillover improvement β̂2. We then calculate excess mortality

using the estimate of concentration-mortality response from Lepeule et al. (2012)

which is commonly used in EPA Regulatory Impact Analyses (see, e.g., EPA 2012; 2014;

2015). We define excess mortality as the number of deaths would have been avoided if

misclassified counties had been classified as nonattainment.

We also go through a secondary, much simpler exercise to calculate excess mortality

that ignores regulator behavior and abatement spillovers. In the non-behavioral

method, we consider only the health benefits of bringing misclassified areas exactly in

line with the NAAQS. Specifically, we estimate what health benefits would have been if

areas over the NAAQS in misclassified areas had their PM2.5 decreased exactly to the

NAAQS (12 µg/m3) while all areas under the NAAQS—including those in misclassified

areas—follow their current trends. After calculating the potential air quality

improvements, we again use the concentration-response from Lepeule et al. (2012) to

calculate excess mortality and its social cost.

We focus on the most recent revision to the PM2.5 NAAQS, which was made in 2012,

lowering the limit for annual average PM2.5 to 12 µg/m3. States submitted

recommendations for their nonattainment designations in 2014 using monitor data

from 2011 to 2013, and official designations were announced in 2015. We focus our

regression analyses on the five year window around 2015, from 2013 through 2017. We

do this for a few reasons. First, we want to use a balanced panel of monitors in the

regression so that monitors leaving or entering the sample do not bias the results. After

restricting to monitors in continuous operation from 2013 through 2017, we have 14

monitors in Group I, 49 in Group II, and 852 in Group III.9 Increasing the time span of

the sample increases the length of the pre-treatment period, but also removes monitors

9. Here we really mean “continuously according to schedule,” so a monitor that was supposed to
operate every sixth day is considered to have “continuously” operated if it did so for the entire period in
question.
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from the sample. The second reason for this restriction is that a new daily standard for

PM2.5 was implemented in 2009, and we want to limit the influence of this event on our

estimates.

4 Data

4.1 Air pollution monitors and attainment designations

Data on EPA’s air pollution monitoring system come from EPA and cover every air

pollution monitor from 1999 through 2017. The data include latitude and longitude,

days of operation, pollution readings, and whether the monitor can be used to

determine NAAQS compliance. When used, average annual readings for each monitor

exclude concurred exceptional events.10

Table 1 reports the number of monitors available for NAAQS compliance during our

period of study. Panel A reports the number of monitors designated as NAAQS primary

compliance monitors that operated in the given year. Column 1 reports how many

monitors operated no more than 80 days during that year, column 2 reports how many

operated 81–120 days, and so on. The strongest time trend is the addition of monitors

operating more than 300 days a year. Panel B reports how many monitors had

sufficient data over the prior three years to calculate a design value. For any given year

and frequency, the number of monitors with three years of data is generally less than

those with one year of data, though small anomalies can occur when monitors move

across the frequency categories year to year. Both panels show that a significant

proportion of monitors operate less than once every three days (columns 1 and 2).

Even as late as 2017, 10 percent of monitors available to calculate design values to

compare with the NAAQS operated no more than 80 days per year.

Data on attainment status are taken from EPA’s Green Book.11

10. In exceptional events that are outside state regulators’ control, such as wildfires, state regulators
may petition to have monitor readings from those events excluded from design value averages. EPA then
chooses whether to concur that the event was exceptional and allow it to be excluded from the design
value.

11. See https://www.epa.gov/green-book/green-book-data-download.
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4.2 Satellite-derived concentration data

The satellite-derived PM2.5 concentration data come from a variety of sources

(van Donkelaar et al. 2015; van Donkelaar et al. 2016).12 The data are primarily

gathered by satellite-based instruments that measure aerosol optical depth (AOD). The

best known of these instruments among economists are the MODIS instruments

aboard the Terra and Aqua satellites (see, e.g., Zou 2018; Grainger, Schreiber, and

Chang 2018; Gendron-Carrier et al. 2018). As these satellites orbit Earth, the MODIS

instruments on board capture data on the density of airborne particles. It does this by

comparing the intensity of solar radiation at the top of the atmosphere with how much

radiation is reflected by Earth’s surface. The more airborne particles there are to scatter

and absorb this radiation, the less radiation is reflected to the satellite.

Both satellites follow a polar orbit, going from the North Pole to the South Pole and

back to the North Pole every 100 minutes or so. As the satellites orbit pole to pole, Earth

continues to rotate, giving the satellites a new swath of ground to scan. The satellites’

orbits are calculated so that they pass over and scan any given point on Earth at

approximately the same time every day. On the sun-facing side of Earth, Terra crosses

the equator at approximately 10:30 a.m. local time with each orbital pass, while Aqua

crosses the equator at approximately 1:30 p.m. Thus, every location is scanned by each

satellite approximately once per day at roughly the same time every day. These

once-a-day readings are temporally sparser than hourly readings available from

ground monitors. However, as discussed in the previous section, few monitors report

hourly data, and most do not collect data every day.

Van Donkelaar et al. (2015) and van Donkelaar et al. (2016) combine the AOD data

from the MODIS MISR (also aboard Terra) and SeaWIFS (aboard OrbView-2 satellite)

instruments with results from the chemical transport model GEOS-Chem.

GEOS-Chem provides information about how pollutants are transported from one area

to another by the wind and how chemical compounds change as they travel. This

combination of measurements and simulation is calibrated using ground-based

monitored observations of PM2.5 at a monthly timescale. The data are then averaged by

year for every 0.01-by-0.01-degree grid cell, which is approximately 1 km2 in area.

While satellite-derived data on air pollution provide unique opportunities for

12. The data we use here are an updated version of the North America data developed in van Donkelaar
et al. (2015), which uses advances presented in van Donkelaar et al. (2016). We are very grateful to Aaron
van Donkelaar for giving us access to these data.
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researchers and policy makers, they also come with a few caveats. First, the satellites

do not measure PM2.5 directly. They measure AOD, which must be scaled to PM2.5

based on local conditions. This is not altogether straightforward even for researchers

with atmospheric sciences training, but AOD itself can sometimes be used to estimate

comparative PM2.5 levels in localized areas. However, when comparing data with

general policy thresholds such as the NAAQS, they must be accurately scaled. Second,

satellites cannot measure ground-level conditions on cloudy days. This is one reason

the satellite-derived data are more reliable at large timescales (months or years) than

small ones (hours or days). Third, the accuracy of the data depends on the sample of

ground-based monitors used for calibration. For example, data calibrated globally

could have mean-zero error globally, but sub-samples of the data (e.g., the data for

North America) may not be mean zero. To avoid this problem, we use data specifically

calibrated for North America, which are quite accurate.13

Figure 1 plots the correlation between the van Donkelaar et al. satellite-derived

data (vertical axis) and annual average readings from ground-based monitors

(horizontal axis). The satellite data for each monitor is taken from the

0.01-by-0.01-degree cell in which the monitor is located. Faint markers indicate

individual monitor–grid cell pairs; bold markers indicate the average for every bin

centered at integers on the horizontal axis (i.e., satellite average for monitor readings of

1 ± 0.5 µg/m3). The shape and color of each marker indicates how frequently the

monitor operates: red circles for monitors that operate no more than 80 days per year;

yellow triangles for 81–120 days; blue squares for 121–300 days; and green pentagons

for those operating more than 300 days per year. Dashed gray lines show the 12 µg/m3

NAAQS threshold for nonattainment classification. In general, the satellites show

strong agreement with the monitors, especially at lower monitor readings. At higher

monitor readings, the satellites tend to underestimate pollution concentrations relative

to the monitors. This would imply that our methodology may be somewhat

conservative in determining areas that are misclassified as attainment.

4.3 Population and demographic data

Block-level data on population counts and race/ethnicity come from the 2010 census.

Block group–level data on educational attainment and household income come from

13. Compare correlation between monitors and satellite data calibrated for North America shown
in Figure 1, discussed below, and the equivalent figure for globally calibrated data restricted to North
America in Figure A1, which shows a systematic upward bias relative to the monitors.
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the 2005–2010 American Community Survey (ACS). Data on county-level all-cause

mortality come from the Centers for Disease Control and Prevention’s (CDC’s)

Compressed Mortality File.14

5 Results

5.1 Monitor coverage and nonattainment status

We begin by looking at the locations of PM2.5 monitors in the continental United States.

Figure 2 shows the location of each of the monitors that were used to make the 2015

attainment determinations. It also labels monitors based on how many days per year

the monitor is required to operate following the same scheme as in Figure 1. We see

significant heterogeneity across states in both the density of monitors and the

frequency of their use. Some states have dense monitor networks that operate daily or

near daily (e.g., California, Pennsylvania). Others are hardly monitored at all (e.g.,

Montana, Maine, Mississippi, Nebraska, Nevada, Idaho).15 Still others have many

monitors, but each of those monitors does not operate more than 80 days per year (e.g.,

Wisconsin, Wyoming). Even within states, coverage can vary. Most of California is

densely monitored, but in central California the monitors operate nearly every day,

while in the Los Angeles Basin they operate no more than once every six days.

Figure 3 shows the designated nonattainment areas established in 2015 for the

annual PM2.5 standard promulgated in 2012. These nonattainment areas cover central

California; the Los Angeles Basin; West Silver Valley, Idaho; Cleveland; Pittsburgh; and

Philadelphia. All these areas were designated as nonattainment because of high

monitor readings and not because they contributed to a downwind nonattainment

area.

The key question the satellite data can answer is whether other counties also

exceed the NAAQS.

5.2 Satellite-measured concentrations and misclassified areas

Figure 4 shows the difference between the satellite-measured three-year average PM2.5

concentrations and the annual NAAQS for the continental United States in 2015. Blue

14. See https://wonder.cdc.gov/cmf-icd10.html.
15. Illinois is a special case where the monitors present in the state were deemed by EPA to be of

insufficient quality to be used for NAAQS assessment. Therefore, all the data were thrown out, and the
entire state was classified as attainment/unclassifiable.
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areas correspond to those for which the satellite predicts a design value below the

NAAQS (12 µg/m3), red areas are those predicted above the NAAQS, and white areas are

those right at the NAAQS. This map shows many areas above the NAAQS, particularly

in California, where Figure 3 also showed large nonattainment areas. However, Figure 4

also suggests that a large share of the Midwest is close to the NAAQS, and several areas

have concentrations well above the NAAQS despite being classified as attainment areas.

Figure 5 focuses on some of these hot spots, highlighting the area bounded by

Chicago on the north and west, Louisville on the south, and Pittsburgh on the east.

Again, red corresponds to concentrations over the NAAQS, white about equal to the

NAAQS, and blue under the NAAQS. County boundaries are plotted in white, official

nonattainment areas are bounded in orange, and monitor locations are represented by

black dots.

This map gives several examples of misclassified areas. First are areas with

concentrations exceeding the NAAQS but that have no monitors in their counties (e.g.,

Logansport, Indiana, north of Indianapolis and southeast of Chicago). Second are

areas exceeding the NAAQS that are not detected because the monitors are too far away

from the hot spots (e.g., southeast of Logansport). Third are cities with multiple

monitors, but those monitors are located on the edges of the hot spots and miss peak

concentrations (e.g., Indianapolis, Louisville, and Cincinnati).

Figure 6 shows all the misclassified counties—those that were designated as

attainment but contain areas that exceed the NAAQS—in the continental United States.

There are 54 such counties across 11 states.16 Table 2 lists the number of people living

in misclassified counties in each state, with separate counts for counties with monitors

and without. For counties that include areas that are both attainment and

nonattainment, we treat the attainment part of the county as a distinct county.17 All

told, 24.4 million people live in misclassified areas. Of these, 10.9 million live in

counties with no monitors. The states with the largest populations of unmonitored and

misclassified people are Illinois (6.4 million misclassified, all unmonitored); California

(4.9 million misclassified, of which 0.8 million are unmonitored); and Texas (4.5 million

misclassified, with 0.4 million unmonitored). Two other states have sizable

16. Table A1 lists all misclassified counties and their core-based statistical areas.
17. If the satellite data find that the attainment portion should also be nonattainment, we count only

people living in the attainment portion as misclassified. Similarly, if the nonattainment portion has
pollution monitors but the misclassified attainment portion does not, we describe the attainment “county”
as having no monitors.
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misclassified populations that are unmonitored: Kentucky (1.2 million misclassified, 1

million unmonitored) and Ohio (2.2 million misclassified, 0.9 million unmonitored).

The total number of people living in misclassified counties is 24.4 million, slightly more

than the number of people currently living in official nonattainment areas (23.3

million).18

5.3 Distribution of people across attainment groups

Table 3 summarizes how various demographic groups are distributed across correctly

classified attainment areas and nonattainment areas, as well as misclassified areas. To

calculate these figures, we use 2010 census block-level data on population,

race/ethnicity, and share urban, and 2005–2010 American Community Survey (ACS)

block group–level data on education and income. The first three columns show what

percentage of the listed group resides in each type of classification area; these columns

sum to 100 by construction. For example, the first row shows that of the 306.6 million

people in our sample, 84.5 percent were correctly classified as attainment, 8.0 percent

(24.4 million people) were misclassified as attainment, and 7.6 percent (23.2 million)

were classified as nonattainment. Column 4 shows the percentage of the given group

that live in an area that satellite data show should be nonattainment (the sum of

columns 2 and 3). Column 5 shows the ratio of people misclassified by monitors to the

number of people flagged by satellites as nonattainment (column 2 divided by column

4). We refer to this ratio as the false negative rate of the monitoring network. For the

whole population, the satellite data found that 15.5 percent (column 2 plus column 3)

should have been classified as nonattainment (misclassified population plus officially

nonattainment), but of these over half (8 percent over 15.6 percent) were misclassified,

for a false negative rate of 51 percent.

Similarly, the second row of Table 3 shows that the false negative rate in rural areas

is 68.6 percent (2.4 percent divided by 3.6 percent). By contrast, urban areas (third row)

have a false negative rate was 50.5 percent. This false negative rate is likely lower than

that for rural areas because monitors are more concentrated in urban areas and are

thus more likely to detect when urban areas exceed the NAAQS compared to rural areas.

Similarly, pollution concentrations are likely to be higher in urban areas where

pollution is more concentrated.

18. We include in these counts Chicago (and the rest of Illinois) and Houston whose designation is
attainment/unclassifiable because their monitoring was not deemed reliable enough to determine
NAAQS compliance.
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There are also large disparities in both pollution concentrations and monitors’ false

negative rates across racial and ethnic groups. White (non-Hispanic) individuals are

the least likely to live in areas that the satellites flagged as nonattainment (misclassified

or official nonattainment), with 11.3 percent living in such areas. The monitors’ false

negative rate for whites is 59.6 percent. The fraction of black individuals flagged by the

satellite as nonattainment is 14.6 percent, with a false negative rate of 65.1 percent.

Hispanics as a group are the most likely to live in an area that exceeds the NAAQS, with

30.0 percent living in these areas. However, their false negative rate is somewhat lower

than that of whites and blacks at 38.5 percent. Asians have a comparable rate of living

in nonattainment and misclassified areas (26.3 percent) but have the lowest false

negative rate of all groups (32.8 percent).

There are similar disparities across educational attainment groups, which are

defined as the highest level of education attained by people at least 25 years old. Those

without a high school diploma are the most likely to live in areas exceeding the NAAQS

(19.0 percent), but the least likely to be missed by monitors (45.0 percent false negative

rate). Those with only a high school diploma are less likely to live in an exceedance area

(13.3 percent) but more likely to be missed by monitors (54.5 percent). Those with a

partial college education are similar (14.9 percent over the NAAQS, 51.4 percent false

negative rate) as are those with a college degree or more (15.3 percent over the NAAQS;

53.3 percent false negative rate).

Looking at households by income, there is surprisingly little variation in both their

likelihood of living in an exceedance area and their false negative rate.

5.4 Excess deaths from being misclassified as attainment

A nonattainment designation requires local regulators to develop and implement plans

to bring their jurisdiction into attainment.19 Had misclassified counties been

designated nonattainment, they might have experienced health benefits from the

ensuing improvement in air quality. In this section, we estimate the extent of these

unrealized health benefits in two ways, first considering how regulator behavior affects

air quality, and then without such considerations.

19. See Chay and Greenstone (2003), Currie et al. (2014), and Bishop, Ketcham, and Kuminoff (2018).
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5.4.1 Effect on Air Quality from Regulator Behavior

As discussed in Section 3, the structure of the CAA and NAAQS create an incentive for

regulators to specifically target improvements around those monitors that exceed the

NAAQS rather than across their jurisdiction as a whole (Auffhammer, Bento, and Lowe

2009; Grainger 2012; Bento, Freedman, and Lang 2015). Following past research,

Equation (1) outlines our difference-in-differences strategy to estimate the effect of this

behavior on air quality.

Before estimating Equation (1), we want to assess the validity of the parallel trends

assumption by estimating the event study equivalent of Equation (1),

Pm t =
∑

y 6=2015

β1,y

�

Nonattainmentm ×Over NAAQSm ×1{t = y }
�

+

∑

y 6=2015

β2,y

�

Nonattainmentm ×Under NAAQSm ×1{t = y }
�

+

δt +δm + εm t

(2)

which takes attainment monitors (Group III) as the baseline and estimates how the

trends of Group I and Group II deviate from Group III. For example, the coefficient

β1,2016 is the difference between Group I in 2016 and 2015, minus the difference in

Group III between 2016 and 2015. If β1,2016 = 0, then Group I and Group III followed the

same trend between 2015 and 2016. If β1,2016 < 0, Group I saw larger improvements in

air quality. The coefficients for 2015 are omitted, so each coefficient is the change

relative to 2015.

Figure 7 plots the β̂1,y and β̂2,y estimates and their 95 percent confidence intervals.

The Group I coefficients (red solid line) are not statistically significant before 2015,

showing a slight downward trend relative to the Group III monitors. The large error

bands are likely due to the small number of monitors in Group I (14 monitors) and the

different local shocks faced by each monitor. However, in 2016, the first year after the

new nonattainment desigations, the confidence interval narrows considerably and the

trend takes a slightly negative turn. The 2016 coefficient is 66 percent larger in

magnitude than the 2014 coefficient, but this difference is not statistically significant.

The Group I monitors make a considerable break from trend in 2017, with a decrease of

3.3 µg/m3 PM2.5 relative to Group III. The Group II coefficients are also somewhat

noisy, hovering around zero with a slight drop in 2017.

Table 4 reports the difference-in-difference regression results. Column 1 reports the
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pooled diff-in-diff of monitor readings on year indicators and a single

nonattainment–post interaction. The “post” period is 2016 and 2017, following the

nonattainment designations made in 2015. The preferred specification in column 2

adds a variable identifying monitors in nonattainment areas operating in 2016–2017

and showing violation of the NAAQS (nonattainment–post–over NAAQS), a triple

interaction term. Both regressions also account for any idiosyncrasies attributable to

specific monitors through monitor-level fixed effects. All standard errors are clustered

by monitor.

Column 1 shows that the average monitor in nonattainment areas records 1.02

µg/m3 less PM2.5 after the 2015 nonattainment designations relative to monitors in

attainment areas. Column 2 allows for a separate effect on monitors over the NAAQS

and shows that the overall decrease in pollution is being driven mostly by monitors

over the NAAQS. Under-NAAQS nonattainment monitors see pollution drop 0.64

µg/m3 relative to attainment monitors, while over-NAAQS monitors see a 2.35 µg/m3

decrease.

5.4.2 Calculating Excess Mortality

To calculate excess mortality from misclassification, we suppose that if misclassified

areas had been designated as nonattainment, they would have experienced an average

decline in pollution levels similar to that in areas properly designated as

nonattainment. Specifically, areas over the NAAQS would have their PM2.5 decrease by

an additional 2.35 µg/m3, while PM2.5 in non-exceeding areas in the same county

would decrease by 0.64 µg/m3. We translate these pollution decreases into decreased

mortality risk by multiplying them by the concentration-response coefficient from

Lepeule et al. (2012) of 14 percent increase in all-cause mortality per additional 10

µg/m3 PM2.5. This leads to a 3.3 percent increase in all-cause mortality in areas over

the NAAQS and a 0.8 percent increase in mortality in the rest of the county. Finally, we

multiply these figures by county-specific death rates from the CDC and block-level

population from the census.

We find that misclassified counties would have avoided 2,826 premature deaths per

year had they been correctly classified. Using EPA’s standard VSL of $9 million, the

social cost of this excess mortality is approximately $25.4 billion per year (EPA 2016,

p. 4-16). While the excess mortality effect is measured annually, it eventually gets

eliminated as pollution trends in nonattainment areas equalize with those in
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attainment areas. A conservative assumption would be that the trends shown in

Figure 7 will equalize after 2017 (after our regression sample) so that all benefits are

realized in 2016 and 2017. This would imply that total excess mortality of

misclassification was 5,652, with a social cost of $51 billion.

We can also make back-of-the-envelope calculations of excess mortality that ignore

regulator behavior. One way is to scale concentrations in misclassified counties so that

all areas are under the NAAQS (12 µg/m3) and then calculate the mortality savings.20

This results in an average decrease in PM2.5 of 0.5 µg/m3 across all misclassified blocks,

leading to 1,398 fewer deaths per year, a welfare gain of $12.6 billion per year. A second

way is “peak shaving”, the scenario where areas that exceed the NAAQS and are located

in misclassified counties have their PM2.5 decreased to exactly 12 µg/m3 while all other

areas are left unchanged.21 This would lead to an average decrease in exposure in

over-NAAQS areas (the Group I equivalent) of 0.43 µg/m3, and no change in the Group

II and Group III equivalents by construction. The resulting excess mortality is 261

deaths per year, with a social value of $2.4 billion per year.

6 Conclusion
The Clean Air Act is the primary air quality regulation in the United States. However, its

success in improving health and environmental quality depends on a limited network

of stationary pollution monitors to provide regulators with information about local

pollution levels. If pollution levels in an area exceed the NAAQS but there is no monitor

nearby, that area is unlikely to exercise mitigation actions to reduce its pollution. In

this paper, we have used satellite data to provide evidence that significant portions of

the country are indeed exceeding the annual PM2.5 NAAQS standard but are

nevertheless designated as being in attainment. Estimates of how regulators impact air

quality in response to a nonattainment designation suggest that correctly classifying

misclassified areas could have save thousands of lives, a potential welfare gain to

society of $51 billion for 2016 and 2017. A more conservative estimate, ignoring

20. Specifically, let the new hypothetical concentration in block b be x̃b ,c = xb ,c

�

12/x max
c

�

where x max
c

is the maximum concentration in county c .
21. Following the notation in Footnote 20,

x̃b ,c =

¨

12 if xb ,c > 12

xb ,c else
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regulator behavior, values the gains from satellite-corrected classification at $2 billion

per year.

While the value to health and social welfare provided by satellite information on air

quality appears to be very large, a few caveats are in order. The main caveat is that

while satellite data are far more spatially dense than ground-based monitoring data,

the conversion of what is actually measured by the satellites (aerosol optical depth) to

PM2.5 is not without error or bias when compared with monitor readings at the same

place. In our case, the bias works to make our surprisingly large estimates of the

misclassified population conservative. The other caveat is the relative temporal

sparseness of reliable satellite data. To achieve high spatial resolution (while

maintaining accuracy) requires aggregating to larger time scales. Yet, on a more macro

scale, the satellites provide data for every day, while in 2016 at most 37 percent of

monitors were operating daily.

When the CAA first became law in 1970, legislators could not have envisioned the

capability of measuring air quality on a spatially precise basis from satellites. Our

results suggest that EPA should examine whether there is scope for satellite data to be

used as one of the factors that enter into the designation decision. Alternatively,

satellite data can be used as a guide in monitor placement and a check that vulnerable

populations are being protected by the Clean Air Act. Failing that, the Clean Air Act

should be reopened to change the designation process to better protect the health of

the US population.
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Figures and Tables
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Figure 1: Satellite Readings versus Monitor Readings
Notes: Horizontal axis is annual average monitor reading. Vertical axis is the satellite-
derived reading for the 0.01-by-0.01-degree cell where the monitor is located. Red circles
indicate monitors that operate no more than 80 days per year; yellow indicate triangles
81–120 days; blue squares indicate 121–300 days; and green pentagons indicate more
than 300 days per year. Faint markers indicate individual marker–grid cell pairs; bold
markers indicate the average for every bin centered at integers on the horizontal axis,
i.e., satellite average for monitor readings of 1 ± 0.5 µg/m3. Dashed gray lines show the
12 µg/m3 NAAQS threshold for nonattainment classification.
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Figure 2: PM2.5 Monitors by Temporal Coverage, 2011–2013
Notes: Categories determined using median of valid observation days from 2011 to 2013. Monitors must cover entire time
period to be included in sample. Red dots denote monitors that operate no more than 80 days per year; yellow triangles
denote 81–120 days per year; blue squares denote 121–300 days; and green pentagons denote at least 300 days per year.
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Figure 3: Clean Air Act Attainment Status, 2015
Notes: Darker areas are those classified as nonattainment with PM2.5 2012 primary standard of 12 µg/m3.

25



Figure 4: Satellite-measured PM2.5 Design Values, 2015
Notes: PM2.5 design values come from the satellite data described in Section 5. Plotted concentration is 3-year lagged average
(2011–2013), which is the design value used to measure compliance with the NAAQS.
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Figure 5: PM2.5 Design Values and Attainment Status
Notes: Orange boundaries indicate official nonattainment areas for the PM2.5 2012 primary standard of 12 µg/m3. Plotted
PM2.5 design values come from the satellite data described in Section 5 and are the average of years 2011–2013, the years of
data that were used in making 2012 rule determinations. Monitor sample restricted to those used for NAAQS assessments.
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Figure 6: Areas Misclassified as Attainment for PM2.5 Annual Standard
Notes: Black areas denote official nonattainment counties and sub-counties. Yellow areas are counties that are misclassified,
i.e., counties that are officially attainment where the satellite data show that some portion of the county exceeds the NAAQS.
Gray areas are correctly classified attainment counties.
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Figure 7: Event Study of Monitor Readings by Attainment Status and Group
Notes: Plot shows estimated coefficients from Equation (2). N=4,575. Number of
monitors in Groups I, II, and III are 14, 49, and 852, respectively. Monitor sample
includes only monitors used for NAAQS compliance and which began operation no
later than 2013 and that operated through 2017. Red dots are the point estimates for
monitors that were in nonattainment areas and that were higher than the NAAQS in
2015 (Group I in the text), i.e., the β̂1,y . Yellow dots are the point estimates for monitors
that were in nonattainment areas and that were below the NAAQS in 2015 (Group II), i.e.,
the β̂2,y . The year 2015 is the reference year for both groups. Regressions also include
monitor-level fixed effects. Bands around each dot show the 95 percent confidence
interval. Standard errors clustered by monitor.
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Table 1: PM2.5 Monitor Counts by Frequency of Operation

≤ 80 days 81–120 days 121–300 days >300 days Total

A. Monitors Operating in the Given Year
2010 121 345 87 148 701
2011 95 341 55 177 668
2012 106 296 93 202 697
2013 83 313 117 229 742
2014 118 319 77 264 778
2015 112 381 59 290 842
2016 99 330 131 326 886

B. Monitors with 3 years of valid data for NAAQS assessment
2013 72 274 73 157 576
2014 67 276 85 179 607
2015 90 290 62 215 657
2016 78 332 45 249 704
2017 77 299 96 274 746

Notes: Panel A reports the number of monitors designated as NAAQS primary com-
pliance monitors which operated in the given year. Column 1 reports how many
monitors operated no more than 80 days during that year, column 2 reports how
many operated 81–120 days, and so on. Panel B reports how many monitors had
sufficient data over the past three years that a design value could be calculated using
that monitor. For example, a monitor that operated in 2016 but not 2015 would not
be counted in 2016 while a monitor that operated in 2013–2015 would be counted in
2016.
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Table 2: Misclassified Population by State

Counties with Counties with
no monitor at least 1 monitor Total

West Virginia 0 24,069 24,069
Tennessee 0 54,181 54,181
Arizona 0 195,751 195,751
Missouri 0 319,294 319,294
Kentucky 975,135 233,242 1,208,377
Pennsylvania 633,269 1,081,820 1,715,089
Ohio 945,497 1,240,213 2,185,710
Indiana 616,795 2,229,834 2,846,629
Texas 418,007 4,092,459 4,510,466
California 844,427 4,059,633 4,904,060
Illinois 6,437,475 0 6,437,475

Total 10,870,605 13,530,496 24,401,101

Notes: All misclassified counties in Illinois are counted as having no
monitor because no monitor data were used in making attainment deter-
minations in that state due to the monitors being deemed insufficiently
accurate.
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Table 3: Distribution of Demographic Groups Across Attainment Classifications

(1) (2) (3) (4) (5) (6)
Nonattain. by Monitors’ False

Percentage of Group Classified as Satellites Negative Rate Population
Attainment Misclassified Nonattainment (2) + (3) (2) / (4) (Millions)

Population 84.5 8.0 7.6 15.5 51.2 306.6

Rural 96.4 2.4 1.1 3.6 68.6 59.1
Urban 81.6 9.3 9.1 18.4 50.4 247.4
Race/Ethnicity

White 88.7 6.7 4.6 11.3 59.6 196.0
Black 85.4 9.5 5.1 14.6 65.1 38.9
Hispanic 70.0 11.6 18.4 30.0 38.5 50.3
Asian 73.7 8.6 17.7 26.3 32.8 14.1
Other 72.4 10.1 17.5 27.6 36.5 30.9

Education
No H.S. Diploma 81.0 8.6 10.5 19.0 45.0 29.8
H.S. Diploma 86.7 7.3 6.1 13.3 54.5 57.5
Some College 85.1 7.6 7.2 14.9 51.4 55.7
College Degree or More 84.7 8.1 7.1 15.3 53.3 55.3

Household Income
<$35,000 86.0 7.6 6.3 14.0 54.6 38.8
$35,000–75,000 85.8 7.7 6.5 14.2 54.2 37.1
>$75,000 84.4 8.1 7.5 15.6 52.1 37.6

Notes: The first three columns of each row show show the percentage of the listed group that is attainment, misclassified, and nonattain-
ment; e.g., 96.4 percent of people in rural areas are live in attainment counties. These columns sum to 100 for each row by construction.
Data for population, share urban, and race/ethnicity come from 2010 census block-level counts. Data for income and education come
from 2005–2010 ACS block group–level estimates. Education sample is people age 25 and older. Household income sample is by
household; fourth column totals are number of households in the given income bin. NAAQS limit is from the 2012 PM2.5 rule and is 12
µg/m3.
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Table 4: Effect of Nonattainment and NAAQS Status on Monitor Readings over Time

(1) (2)

Nonattainment×post -1.0217***
(0.2134)

Nonattainment×Over NAAQS×post -2.3496***
(0.4453)

Nonattainment×Under NAAQS×post -0.6423***
(0.2121)

2014 -0.1728*** -0.1728***
(0.0432) (0.0432)

2015 -0.4735*** -0.4735***
(0.0430) (0.0430)

2016 -1.1766*** -1.1766***
(0.0508) (0.0508)

2017 -1.4239*** -1.4239***
(0.0606) (0.0606)

R2 0.828 0.829

Notes: N=4,575. Number of monitors in Groups I, II, and III are 14, 49,
and 852, respectively. Outcome variable is annual average monitor read-
ing of µg/m3 PM2.5. Monitor sample includes only monitors used for
NAAQS compliance and which began operation no later than 2013 and
that operated through 2017. The variable “post” is an indicator variable
for years greater than 2015. “Over NAAQS” is an indicator variable for
monitors whose annual average in 2015 exceeded the NAAQS limit of 12
µg/m3. “Under NAAQS” is the complement of “Over NAAQS”. Regres-
sions also include monitor-level fixed effects. Standard errors clustered
by monitor: ** p < .05, *** p< .01.
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Figure A1: Globally Calibrated Satellite Readings versus Monitor Readings
Notes: Horizontal axis is annual average monitor reading. Vertical axis is the satellite-
derived reading for the 0.01-by-0.01-degree cell where the monitor is located. Red circles
indicate monitors that operate no more than 80 days per year; yellow indicate triangles
81–120 days; blue squares indicate 121–300 days; and green pentagons indicate more
than 300 days per year. Faint markers indicate individual marker–grid cell pairs; bold
markers indicate the average for every bin centered at integers on the horizontal axis,
i.e., satellite average for monitor readings of 1 ± 0.5 µg/m3. Dashed gray lines show the
12 µg/m3 NAAQS threshold for nonattainment classification.
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Table A1: Misclassified Counties and their Metro Areas
State County Core-based Statistical Area (Metro Area)

Arizona Yuma County Yuma, AZ
California Imperial County* El Centro, CA

Kern County* Bakersfield, CA
Los Angeles County* Los Angeles-Long Beach-Anaheim, CA
Orange County* Los Angeles-Long Beach-Anaheim, CA
Riverside County* Riverside-San Bernardino-Ontario, CA
San Diego County San Diego-Carlsbad, CA
Ventura County Oxnard-Thousand Oaks-Ventura, CA

Illinois Cook County Chicago-Naperville-Elgin, IL-IN-WI
Lake County Chicago-Naperville-Elgin, IL-IN-WI
Madison County St. Louis, MO-IL
St. Clair County St. Louis, MO-IL

Indiana Bartholomew County Columbus, IN
Cass County Logansport, IN
Clark County Louisville/Jefferson County, KY-IN
Floyd County Louisville/Jefferson County, KY-IN
Hamilton County Indianapolis-Carmel-Anderson, IN
Jackson County Seymour, IN
Johnson County Indianapolis-Carmel-Anderson, IN
Lake County Chicago-Naperville-Elgin, IL-IN-WI
Marion County Indianapolis-Carmel-Anderson, IN
Porter County Chicago-Naperville-Elgin, IL-IN-WI
Shelby County Indianapolis-Carmel-Anderson, IN
Spencer County
Tippecanoe County Lafayette-West Lafayette, IN
Vanderburgh County Evansville, IN-KY
Vigo County Terre Haute, IN

Kentucky Bullitt County Louisville/Jefferson County, KY-IN
Campbell County Cincinnati, OH-KY-IN
Daviess County Owensboro, KY
Henderson County Evansville, IN-KY
Jefferson County Louisville/Jefferson County, KY-IN
Kenton County Cincinnati, OH-KY-IN

Missouri St. Louis city St. Louis, MO-IL
Ohio Butler County Cincinnati, OH-KY-IN

Clermont County Cincinnati, OH-KY-IN
Cuyahoga County* Cleveland-Elyria, OH
Hamilton County Cincinnati, OH-KY-IN
Jefferson County Weirton-Steubenville, WV-OH
Montgomery County Dayton, OH
Warren County Cincinnati, OH-KY-IN

Pennsylvania Berks County Reading, PA
Cumberland County Harrisburg-Carlisle, PA
Dauphin County Harrisburg-Carlisle, PA
Westmoreland County Pittsburgh, PA
York County York-Hanover, PA

Tennessee Roane County Knoxville, TN
Texas Harris County Houston-The Woodlands-Sugar Land, TX

Kinney County
Maverick County Eagle Pass, TX
Starr County Rio Grande City, TX
Val Verde County Del Rio, TX
Webb County Laredo, TX

West Virginia Brooke County Weirton-Steubenville, WV-OH

* Partially misclassified county
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