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Abstract

While the costs of environmental policies are generally thought to be regressive, the
distribution of benefits is less understood. This paper explores the incidence of an
unexpected decrease in air pollution in metropolitan Los Angeles by estimating the
resulting change in housing costs and neighborhood demographics. The decrease in
air pollution was caused jointly by the California Electricity Crisis of 2000 and the
RECLAIM cap-and-trade program for NOx emissions and impacted neighborhoods
differentially based on their location relative to major polluters and local wind patterns.
I measure local exposure to this pollution shock using a dispersion model developed
by atmospheric scientists which calculates the effect of individual firms’ emissions on
the air quality of nearby locations. The estimates show that (a) housing rents increase
significantly and as much as house prices; (b) 9% of low-income households leave the
sample area due to improved air quality; and (c) low-income households are rarely
home owners who would benefit from increased housing wealth. I show that a standard
residential sorting model predicts that when low-income residents respond to improved
amenities by leaving, the distribution of benefits from the improvement is likely regressive.
Together, these results suggest that the distribution of benefits from improved air quality
likely favors higher-income households.
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1 Introduction

Past research suggests that the costs of many environmental policies fall disproportionately
on low-income households, while much less is known about the distribution of benefits
(Parry et al. 2006; Bento 2013). This is especially true in the case of local air pollution.
More polluted neighborhoods tend to be poorer, raising the possibility that air quality
policies could especially benefit these residents. But like any place-based policy, improve-
ments to air quality are likely to impact housing markets, potentially raising home values
and rents. This could give a larger share of the benefits to higher-income households (who
are more likely to be homeowners) and induce lower-income households to simply move
in the face of rent increases.

Past empirical findings about the effects of air quality changes on neighborhoods’ rents
and demographic composition are mixed. Early work implies a more regressive distribution
of benefits, though these studies did not focus specifically on incidence. Davis (2011) finds
that the construction of a new power plant in a neighborhood causes rents and house prices
to fall similarly, and the average household becomes poorer and less educated. Similarly,
Banzhaf and Walsh (2008) find that population flows into cleaner neighborhoods, with
some evidence that average income responds negatively to pollution exposure. In contrast,
more recent work comes to the opposite conclusion. Currie et al. (2015) and Bento,
Freedman, and Lang (2015) find no change in neighborhood demographics in response to
changes in pollution exposure. Bento, Freedman, and Lang (2015) and Grainger (2012)
also find that effect of air pollution on rents is about half the effect on house prices.

One possible explanation for these conflicting results is the systemic mismeasurement
of pollution exposure, highlighted by Sullivan (2017), which arises due to the complex
atmospheric forces that determine the geographic distribution of air pollution. When pollu-
tion leaves a firm’s smoke stack, most of it travels downwind and significant concentrations
can reach areas far beyond the firm’s own neighborhood. Use of concentric circles to
define treatment areas—one of the predominant methods of defining treatment groups in
the wider pollution literature and the method used by most of the studies cited above—does
not account for this fact. This leads to misspecification of who is exposed to pollution and
who is not. In a quasi-experimental framework, assignment to “treatment” and “control”
areas is often incorrect. This in turn leads to severe bias in the estimated impact of a
pollution change—even with an ideal natural experiment—as demonstrated empirically
in the case of house prices by Sullivan (2017). That study finds that using a rigorous,
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wind-based measure pollution exposure yields estimates that are an order of magnitude
larger than estimates from conventional methods and estimates from prior research.

The goal of this paper is to use both a natural experiment and a rigorous, atmospheric
science–based measure of pollution exposure to measure the effects pollution has on
neighborhood-level outcomes. I use an atmospheric dispersion model developed by
the American Meteorological Soceity and the U.S. Environmental Protection Agency
(EPA) to determine which areas are actually affected by an exogenous shock to firm-
level pollution emissions. Using this model and administrative data from firms’ in-stack
emission monitors, I calculate every firm’s pollution contribution to every point in a 100-
meter grid covering most of the Los Angeles/Long Beach area. This allows me to precisely
measure how much each neighborhood, defined by Census block groups, benefited from
the exogenous air quality improvement. The exogenous drop in pollution which I exploit
was caused by the California Electricity Crisis of 2000, which precipitated the near collapse
of RECLAIM, a then nascent cap-and-trade market for NOx in southern California, which
in turn caused firms in the area to quickly adopt abatement technology. This led to a
sudden and permanent decrease in pollution levels which differed across neighborhoods.
Using AERMOD, the Crisis, and block group data from the 2000 Census and 2005–2009
ACS, I am able to estimate the effects of a sudden pollution change on neighborhood
characteristics.

To motivate the neighborhood-level analysis and the interpretation of the results, I
present a model of residential sorting based on Epple, Filimon, and Romer (1984) and
subsequent literature, especially Banzhaf and Walsh (2008). The canonical version of this
model predicts that when a city or neighborhood’s amenities improve, people flow into
the area until rising prices stem the flow of immigrants and a new equilibrium is achieved.
However, the comparative statics derived in past versions of this model do not allow for the
possibility that low-income incumbent residents may respond to an amenity improvement
and subsequent increase in housing costs by leaving the area. I expand the scope of these
derivations to show that the canonical model does allow for low-income residents to “flee”
an amenity improvement, and that this occurs if and only if their willingness to pay (WTP)
for the local amenity is significantly lower than their higher-income neighbors’ WTP.
Thus, a significant out-migration of lower-income households following an improvement
would suggest that these households value the improvement much less than higher-income
households.

The empirical results suggest that the benefits of the Crisis and RECLAIM flowed
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more to high-income households than low-income households. First, housing rents in-
creased significantly in improved neighborhoods and the increase was very similar to
the one found for house sales by Sullivan (2017). Thus, lower-income renters were not
shielded from the price increase that accompanied the amenity improvement. Second,
improved neighborhoods became richer and better educated but less populous, with fewer
people, households, and housing units. These effects are driven by the emigration of
low-income households (income below $30,000) from improved areas. Higher-income
households also moved into these newly cleaned areas, though not enough to offset the
lower-income emigrants. As far as these households were renters and not home owners,
the residential sorting model suggests that they valued the air quality improvement less
than the income high-income households. Third, I find that home-ownership rates in ex
ante low-income neighborhoods were low and that large gains in property values from
the relatively larger pollution improvements in these neighborhoods did not offset low
home-ownership rates. That is, even though poorer households saw larger improvements
because their neighborhoods were initially more polluted, so few of these households
owned their homes that, as a group, they enjoyed a much smaller positive wealth shock
due to home value appreciation than higher-income residents did. Each of these findings
points in the direction of a relatively regressive distribution of benefits.

2 Theory

The model presented here follows the framework of Epple, Filimon, and Romer (1984)
and subsequently Epple, Filimon, and Romer (1993), Epple and Sieg (1999), Banzhaf and
Walsh (2008), and others. Households, defined by their income, choose to live in one of J

communities based on each community’s exogenous level of amenities and endogenous
housing price. By imposing the assumption that household preferences exhibit single-
crossing in income and the amenity, the existence of a unique equilibrium is guaranteed
and communities will be stratified by prices, amenities, and household income.

The contribution of this paper is in the derivation of comparative statics and other
results using a three-city version of this model rather than a two-city version. With two
communities stratified by income and amenities, changes to either amenity bundle result in
population flowing into the newly improved area as predicted by Tiebout (1956) (see, e.g.,
Banzhaf and Walsh 2008). This transition is depicted in Figure 1. If the higher-income
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community improves its amenities, the previously marginal households with income ỹ will
move into the newly improved community. However, both of these communities have one
exogenous boundary, which precludes the possibility that people might “flee” an amenity
improvement because other participants in the market have bid up prices. A three-city
model (see Figure 2) allows for this possibility in the middle city which has no exogenous
boundaries.

2.1 Model Setup

Definition 1 (Community). A community j ∈ {1, . . . ,J} is characterized by (p j,g j), its
endogenous unit price of housing and its exogenous amenity level. Housing in community
j is supplied according to S j(p) which has the following properties: S j

p > 0; S j(pl
j) = 0

for some lower bounding price pl
j > 0; and 0 < S j(p)< ∞ for p > pl

j.

Definition 2 (Household). A household is characterized by its income, y, which follows a
distribution f (y) with continuous support [yl,yh]. A household’s preferences are character-
ized by indirect utility V (y, p,g) which is assumed to have the following basic properties:
Vy > 0; Vp < 0; Vg > 0. Households also have housing demand h(p,y) which is assumed
to be independent of g and to have the following properties: hp < 0, hy > 0, 0 < h < ∞.1

Households choose the community (p j,g j) that maximizes their utility.

An equilibrium is as an allocation of households to communities such that (a) no
household wants to move to another community (spatial equilibrium); and (b) the housing
market in each community clears (internal equilibrium). The extensive literature on this and
similar spatial models has found that characterizing this equilibrium and guaranteeing its
existence requires some additional structure.2 The approach used in the papers previously
cited, which I follow here, is to assume V satisfies single-crossing in p and g.

Assumption 1 (Single-crossing preferences). Assume V (y, p,g) satisfies the single-crossing

property in p and g:

M(y, p,g) =−
Vg(y, p,g)
Vp(y, p,g)

=
dp
dg

∣∣∣∣
V=V̄ (y)

(1)

1. See Epple and Sieg (1999) or Sieg et al. (2004) for an example and discussion of an indirect utility
function that satisfies these properties.

2. See Epple and Sieg (1999) and Kuminoff, Smith, and Timmins (2013) for a discussion.
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is monotonically increasing in y for all (y, p,g).

Note that M(y, p,g) is the slope of an indifference curve in (p,g) space for a fixed y.
Assumption 1 requires that the slope of this curve be increasing with y.

Epple, Filimon, and Romer (1984) show that under Assumption 1 an equilibrium like
the one described above will take the following form:3

Definition 3 (Equilibrium; Epple, Filimon, and Romer 1984). Without loss of generality,
suppose that communities are indexed such that g j < g j+1. Under Assumption 1, an
equilibrium can be characterized by a set of boundary incomes {ỹ1, . . . , ỹJ−1} and prices
{p1, . . . , pJ} such that ỹ j < ỹ j+1 and p j < p j+1, where the following conditions hold:

V
(
ỹ j, p j,g j

)
=V

(
ỹ j, p j+1,g j+1

)
∀ j < J (2)∫ ỹ j

ỹ j−1

h(p j,y) f (y)dy = S j(p j) ∀ j (3)

where ỹ0 = yl and ỹJ = yh.

The first set of conditions are boundary indifference (or spatial equilibrium) conditions
which require the household which borders j and j + 1 on the income continuum to
be indifferent between the two. The second set of conditions are internal equilibrium
conditions for each community, which require housing demanded to equal housing supplied.
Epple, Filimon, and Romer (1993) show that such an equilibrium exists and is unique.

2.2 Implications of the Model

In this section, I derive conditions under which some households may respond to an
improvement in their community by leaving it. The key assumption of the model, single-
crossing preferences, effectively requires that higher-income households have a higher
MWTP for g than lower-income households.4 Thus, for community j, the lowest-income
household ỹ j−1 has a lower MWTP for the amenity than the highest-income household

3. Epple and Sieg (1999) extend this model to include heterogeneity in preferences as well as income
and characterize the equilibrium similarly. In that case, where α is the preference parameter, community
boundaries are lines ỹ j(α) in income-preference space.

4. Recall that single-crossing requires dp/dg = M(y, p,g) to be increasing in y. Let V̄ =V (y,g, p(g)) be
a fixed utility level where p(g) is a function such that p ≤ p(g)⇒ V (y,g, p(g)) ≥ V̄ . That is, p(g) is the
highest price the household can pay for g without its utility falling below V̄ . Differentiating V̄ =V (y,g, p(g))
with respect to g yields Equation (1).
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ỹ j, meaning that the higher-income household will bid more for an increase in g. If the
difference in MWTP is large enough, the price of housing in community j may increase
enough that the lower-income household is better off moving to community j−1.

However, such “fleeing” of an amenity improvement can only occur in a community
where both upper and lower income boundaries are endogenous, otherwise low-income
households are mechanically blocked from fleeing or high-income households are mechan-
ically blocked from flowing into the area and bidding up prices. As such, I consider the
case where J = 3, since the case of J = 2 considered in past literature does not include
any communities with two endogenous boundaries. Proofs of all propositions are given in
Appendix A.

Suppose J = 3, so the vector of endogenous variables is (ỹ1, ỹ2, p1, p2, p3) and the
exogenous variables of interest are (g1,g2,g3). (Figure 2 depicts the income continuum
and the boundaries of each of the three communities.)

Proposition 1. The following conditions hold:

∂ ỹ2

∂g2
> 0;

∂ p2

∂g2
> 0;

∂ p3

∂g2
< 0 (4)

∂ ỹ1

∂g2
∝

∂ p1

∂g2
(5)

and the sign of ∂ ỹ1/∂g2 is ambiguous.

These comparative statics are not surprising.5 In response to the improvement to
Community 2, the price of housing there increases and some residents of Community 3
move in. The proportionality in Equation (5) also follows economic intuition, with p1

decreasing if some Community 1 residents move up to Community 2 and p1 increasing if
some residents of Community 2 flee into Community 1. The fact that these last two effects
cannot be signed without additional conditions is consistent with the previously discussed
intuition where the behavior of the poorer incumbents depends on the difference in MWTP
of the boundary households.

Proposition 2.
∂ ỹ1

∂g2
> 0

5. Proposition 3, given in Appendix A, shows that the effects of a change in g1 or g3 are likewise
consistent with past results.
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if and only if
M(ỹ2, p2,g2)

M(ỹ1, p2,g2)
> R∗ (6)

where R∗ depends on (ỹ2,g2,g3, p2, p3).

The right side of the inequality, R∗, is a term that captures the trade-offs the ỹ2 house-
holds face when choosing between Community 2 and Community 3. (See Appendix A
for a precise definition and brief discussion of R∗.) This term serves as a bound on how
different the MWTP for g can be within a community before an improvement in g leads to
emigration by the poorest households.

This result gives a provides a bridge between observable behavior and preferences:
households observed fleeing the improvement value it significantly less than those who
stay or those who move in. If these households are predominantly lower-income, as the
model predicts, this would imply that the amenity-improving policy has a more regressive
distribution of benefits. Testing for such a disparity by income is a primary empirical goal
of this paper.

3 Research Design

3.1 Measuring Air Quality with AERMOD

A key problem in the study of air pollution is knowing who is exposed to pollution and
how much they are exposed to. Unlike wages and other economic variables, there are no
large-sample data on individual-level pollution exposure. One approach to measuring the
effect of a policy intervention is to use an individual’s (or a neighborhood’s) proximity
to an affected firm as a measure of their exposure to the policy’s effects.6 A drawback to
this approach is that air pollution is blown away from its source in the direction of the
wind, meaning two neighborhoods equidistant from a pollution source can see pollution
exposure that is different by several orders of magnitude. Pooling such neighborhoods
together and treating them as equally exposed causes estimates of pollution’s effects to be

6. This is the approach taken by Davis (2011), Banzhaf and Walsh (2008), Currie et al. (2015), and others.
Grainger (2012) and Bento, Freedman, and Lang (2015) take a similar approach. Instead of using proximity
to firms, they use proximity to individual monitors because local regulators have an incentive to target firms
near monitors for special enforcement of air quality regulations because the monitors are the metric for local
compliance with regulations. However, this does not solve the issue of whether individuals or neighborhoods
are located upwind or downwind of the firms affecting the monitor.
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biased toward zero. Another widely used approach to this problem is to proxy for local
exposure with data from nearby pollution monitors, usually via interpolation. However,
pollution monitors in the United States are sparse relative to pollution sources and so they
miss most of the local variation created by each of this sources, again biasing estimates
toward zero. These problems are discussed in more detail by Sullivan (2017), which also
presents empirical evidence of these biases in the context of pollution’s effect on housing
prices.

A solution to these problems is to use an atmospheric dispersion model to explicity
account for meteorology and for the local spikes in pollution exposure around each
individual pollution source. A dispersion model uses data on a polluting firm and the
meteorology around the source to predict the impact of the firm’s pollution on air quality
of nearby locations. In this paper, I use AERMOD, the EPA’s legally preferred model
for short-range applications. This preference is based on the model’s high accuracy as
established by peer-reviewed field tests (Perry et al. 2005).7 To account for meteorological
conditions, AERMOD uses hourly data on temperature, wind speed, and wind direction
at multiple elevations; the standard deviation of vertical wind speed; the convectively
and mechanically driven mixing heights; and other parameters.8 To account for firm
characteristics, AERMOD also uses smoke stack’s height and diameter, the temperature
and velocity of the gas exiting the stack, and the rate at which the pollutant in question
is emitted from the stack (mass per unit time). Given this data, the model outputs the
concentration of emissions at location i in micrograms per cubic meter of air, abbreviated
µg/m3. Figure 6a depicts exposure in greater Los Angeles to industrial NOx emissions in
2000.9

AEMROD’s predictions at individual locations can be used to construct neighborhood-
level measures of average exposure.10 First, AERMOD is used to create aermodit , exposure
at location i and time t, where i is a point in a 100 meter raster covering the sample area.
This 100-meter measure is then used to find the average exposure to each Census block via
numerical quadrature, assuming a uniform distribution of population within each block.

7. Validation experiments such as Perry et al. (2005) are conducted by placing a dense network of
several dozen monitors around a firm, releasing a rare, non-reactive tracer chemical, then comparing model
predictions to monitor readings. Regulatory preference for AERMOD is stated in 40 CFR pt. 51, app. W
(2004). See Cimorelli et al. (2005) for a rigorous development of the model itself.

8. A full list of the variables used is found in the AERMOD user manual or Cimorelli et al. (2005).
9. Discussion of the sample area is given in Section 3.3.

10. The construction of the exposure measure is discussed in more detail in Section 4.5.
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The block-level averages can then be used to create a block group–level average, aermodnt ,
weighting by block population.

While AERMOD has been thoroughly vetted by atmospheric scientists, I also validate
its predictions in the sample area against contemporaneous monitor readings in Figure 3.
Sub-figure (a) plots the AERMOD-predicted exposure to NOx at the northern monitor in
the sample area (see Figure 6a) over time as well as the actual monitor readings from that
monitor, and sub-figure (b) plots the same for the southern monitor. Plotted values are
averages from the fourth quarter of each year because the AERMOD and monitor readings
are most comparible at this time. This is because relatively fewer chemical reactions occur
in the atmosphere during this time of year; these reactions are discussed in more detail
below.11

Figure 3 shows a stark similarity in AERMOD and monitor patterns over time, sug-
gesting that AERMOD is measuring pollution exposure with accuracy. The most notable
feature of these time series is the drop in NOx following the California Electricity Crisis
in the latter part of 2000 which mirrors the drop in firms’ NOx emissions shown in Fig-
ure 5. (Both the Crisis and Figure 5 are discussed in detail in Section 3.) There are some
discrepancies between the AERMOD and the monitors, which most likely due to other
sources of NOx like cars, atmospheric chemistry, or the limitations of the meteorological
data discussed in Section 4.5. Nevertheless, the AERMOD predictions appear to track
changes in pollution exposure over time with accuracy.

A final caveat—and potential advantage—about measuring dispersion model predic-
tions is that they do not necessarily take into account chemical reactions that occur in the
atmosphere. Many pollutants react with other chemicals in the atmosphere once they are
emitted. In particular, NOx can combine with free oxygen through several intermediary
reactions to form ozone, which itself is not emitted directly by polluters and is only present
at ground level as a product of NOx-based reactions. Though AERMOD and other disper-
sion models are capable of modeling this chemical process, it requires high-quality data on

11. It should also be noted that each variable is measured in different units, mass per volume µg/m3 for
AERMOD and parts-per-million (ppm) for the monitors. Both the RECLAIM firm-level monitoring system
and AERMOD measure firm emissions by mass of NO and NO2 emitted (i.e. grams of NOx) and AERMOD
outputs local concentrations in mass per volume of air (µg/m3). In contrast, monitors measure the number of
NO and NO2 molecules relative to other molecules in the air. It generally possible to convert between these
two units using the ideal gas law. However, RECLAIM’s monitoring systems do not differentiate between
NO and NO2 and the relative ratio of these chemicals is crucial to converting between µg/m3 and ppm. Given
this limitation of the data, and the near certainty that the NO/NO2 mix varies both across firms and across
time within firms, it is best to compare the AERMOD predictions and monitor readings as is.

9



pre-existing levels of many other pollutants.12 The lack of such data is the very problem
for which AERMOD is the proposed solution, and because of this lack of data I do not
model this conversion. This changes the interpretation of the AERMOD prediction from
“exposure to NOx” to “exposure to NOx and ozone”, which is a more comprehensive and
policy-relevant metric.

While AERMOD solves the problem of measuring pollution exposure, it does not
eliminiate the need for a natural experiment to identify the effect of pollution exposure on
economic outcomes of interest..

3.2 Electricity Crisis as Natural Experiment

To identify the causal effect of pollution exposure on house prices, I use the natural
experiment created by the California Electricity Crisis of 2000, which unexpectedly and
permanently lowered NOx emissions through its effect on the RECLAIM cap-and-trade
program.

In 1994, the South Coast Air Quality Management District (SCAQMD), which reg-
ulates air pollution in Los Angeles, Orange, San Bernardino, and Riverside Counties,
instituted a cap-and-trade program for NOx emissions called RECLAIM (see Fowlie,
Holland, and Mansur 2012). At the beginning of the program, firms were given an initial
allocation of RECLAIM Trading Credits (RTCs) for each of the upcoming years. Under
the program, firms must surrender one current-year RTC at the end of the year for every
pound of NOx emitted. Excess RTCs can be sold to other firms but not banked for future
years. To ease firms’ transition into the program, the total number of RTCs was set to be
higher than total emissions initially and decrease over time The aggregate RTC cap was
anticipated to become binding (when total emissions would equal or exceed total RTCs
available to the market) around 1999.

However, firms did not adequately plan for the day when the trading cap would be
binding. In order for total emissions to stay under the RTC cap, some firms would need
lower NOx emissions by either installing abatement equipment to remove NOx from their
emitted smoke or by decreasing production. But RTC prices were so low there was little
short-run incentive to install abatement equipment. SCAQMD publicly reported in mid-

12. Besides UV light, the NOx–ozone reactions also depend on a class of several dozen chemicals called
volatile organic compounds, or VOC’s. The rate of NOx–ozone conversion can also depend on the relative
ratios of NO, NO2, and ozone.
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1998 that then current abatement installations were lagging behind what was necessary
to avoid the coming “cross-over point” when emissions would equal or exceed permits.
Some firms had even canceled orders for abatement equipment they had made prior to the
start of the cap-and-trade program. Firm managers later reported that they believed other
“companies were reducing their emissions or were going to begin installing [abatement
equipment], and as a result believed that they would be able to buy credits. . . [and] that
long-term RTC prices would continue to stay low or would at least gradually rise to the
cross-over point” (EPA 2002, p. 24).

This failure to anticipate increased RTC prices caused the cap-and-trade market to
nearly collapse at the onset of the California Electricity Crisis in mid-2000. The facet
of the Crisis most critical to RECLAIM was that electricity demand theatened to exceed
potential supply.13 To prevent rolling black-outs, many electricity producers significantly
increased generation and, as a result, their NOx emissions. This caused the aggregate RTC
cap to finally bind which in turn caused a dramatic spike in RTC prices, from $2,800 per
ton in 1999 to $62,000 by the end of 2000. Figure 4 plots aggregate NOx emissions, total
RTCs, and average RTC prices over time and depicts this sudden change in the market.

Firms not generating electricity responded by finally installing abatement equipment,
ultimately leading to a permanent decrease in the average firm’s emissions by almost 40%.
This sudden drop is shown by the solid lines in Figure 5 which plots the quarterly and
annual average of firm emissions scaled by the firm’s own sample maximum. The dashed
lines show emissions for electricity generators, which also decreased their emissions once
the Crisis had subsided by more than 50% relative to pre-Crisis levels.

The permanence of these pollution reductions, despite the temporary nature of the
Crisis, is due to the permanence of the RECLAIM cap-and-trade market. RECLAIM’s
aggregate emissions cap was the true driving force behind the pollution reductions. The
cap, which firms had failed to anticipate, became permanently binding during the Crisis.
Had firms adapted to the future binding of the cap—as each firm believed all other firms
were doing—there may not have been any permanent change in pollution due to the Crisis.
Instead, the Crisis synchronized and hastened the long-term adaptation to the Crisis that
should have already happened.

The sudden, permanent drop in emissions that followed the Crisis can be used to

13. The exact causes of the Crisis, such as the derelguation of wholesale electricity markets and market
manipulation by certain actors, remain a source of debate. See Borenstein (2002) and Weare (2003),
especially Section 3.
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construct a set of instruments for local residents’ exposure to firms’ pollution. When faced
with high RTC prices, firms with more emissions had a larger incentive to cut emissions,
so the Crisis should have had a larger effect on houses downwind of these firms. A
house’s pre-Crisis exposure to industrial emissions can be used to gauge its exposure to the
“treatment” of the Crisis relative to other houses. Houses with higher pre-Crisis exposure
will on average experience larger decreases in pollution exposure.

Using aermodnt , the AERMOD-predicted exposure to neighborhood/block group n

in time t, I define pre-Crisis exposure aermod_pren as the average exposure across all
8 quarters in 1995 and 1996, the first two years for which firm-level emissions data is
available. With aermod_pren, the most natural instrument is aermod_pren×postt where
postt = 111{t ≥ 2001} is an indicator variable for post-Crisis years. This is essentially a
variable-intensity difference-in-difference instrument.

The identification assumption behind this instrument is that there are no coincidental
changes in house prices or non-industrial pollution exposure that are correlated with the
instruments, conditional on the other covariates. For example, the housing bubble might
have induced more appreciation in poorer neighborhoods which may be relatively more
polluted before the Crisis due to residential sorting. Fortunately, we can explicitly control
for time trends in such risk variables, and the build up of the bubble was not a discrete
event like the Crisis was, so this assumption can be assessed using the event study. Another
potential problem is that the instruments might be correlated with changes in NOx from
cars. This would bias second-stage estimates upward if industrial exposure were correlated
with automobile exposure and the Crisis also caused a sudden and permanent drop in car
usage in the area. The former condition is unlikely given the large area that firms affect,
while highways rarely have a significant impact beyond 500 meters (Karner, Eisinger, and
Niemeier 2010; Anderson 2015). Furthermore, traffic data show that no significant change
in driving patterns coincided with the Crisis.14

14. Unreported regressions show traffic patterns had no significant break from trend through the period of
the Crisis. I use data from the California Department of Transportation’s Freeway Performance Management
System (PeMS) for the Bay Area (region 11), 1999–2005. The Bay Area is used because data for Los
Angeles only go back to 2001.
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3.3 Estimation Strategy

The following empirical equation relates block group SES outcomes to pollution exposure:

ynt = aermodntβ +posttα +δn +
(
WWW n×postt

)
ΓΓΓ+ εnt (7)

where ynt is some characteristic of block group n (e.g., population) in period t; aermodnt

is exposure to industrial NOx-based pollution; δn are block group fixed effects; WWW n is a
vector of time-invariant block group characteristics detailed below; and εnt is the usual
residual term. Period t indexes data from either the 2000 Census, before the Crisis, or
the ACS 5-year average for 2005–2009, the earliest available block group data after the
Crisis. These controls account for a number of factors that may confound estimates of β .
The block group fixed effects, δn, capture of all time-invariant characteristics about the
neighborhood.

The vector WWW n controls for differential effects by block group characteristics over
time by including two kinds variables. The first kind is dummy variables for the block
group’s location within the metropolitan area, defined by a 10 km grid.15 This allows
different parts of the metropolitan area to have different secular trends. The second kind
of variables in WWW n control for the block group’s socio-economic characteristics in the
year 2000. For example, if labor market shocks over this period differentially affect low-
and high-education workers, this could be captured in part by β if pollution exposure is
correlated with educational attainment. To solve this problem, I include the following year
2000 block group characteristics in WWW n: population; number of households; log median
household income; fraction of households with low income (less than $30,000); fraction
with middle income ($30–60,000); fraction with high income (at least $60,000); population
over age 25; fraction of adults over age 25 with no high school diploma; fraction with high
school diploma but no time at college; fraction white (non-Hispanic); fraction Hispanic;
fraction black. These variables are discussed further in Section 4.2. The low, middle, and
high income bins are chosen because they break the population roughly into terciles.

15. Given the large size of the sample region, the ideal geographic unit for these trends would be individual
cities, which have economically meaningful boundaries (unlike zip codes) and are generally small but not so
small as to be computationally burdensome (unlike tracts and zip codes). Unfortunately, many cities are not
geographically convex, and the cities of Los Angeles and Long Beach cover a large portion of the sample
region while also having a great deal of within-city heterogeneity. To overcome these issues, I use a 10-km
gridwhich is aligned to preserve as many city boundaries as possible. This grid results in 17 different areas
that each get their own time effects.
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Using the instrument described in Section 3.2, the reduced-form estimate of the Crisis’
effect is simply

ynt =
(
aermod_pren×postt

)
π +posttα +δn +

(
WWW n×postt

)
ΓΓΓ+ εnt (8)

I restrict the region of analysis to the southwest region of SCAQMD territory, roughly
between Santa Monica and Huntington Beach (see Figure 6a), to minimize measurement
error due to geography. All of the major polluters are located in this region and locations
farther away from the pollution sources are likely to have less actual exposure from the
firms and more noise in the modeling prediction, decreasing the signal-to-noise ratio of the
pollution measure. Predicting the pollution distribution is also more complicated farther
inland because of the San Gabriel and Santa Ana Mountains, which can act like a dam,
collecting pollution blown from the coasts. To avoid these problems, I restrict my sample
to houses within 10 kilometers of a major electric firm in Los Angeles or Orange County.16

4 Data

4.1 Houses

Data on home sales and housing characteristics come from county registrar and assessors’
offices and were collected by DataQuick, Inc. The data include any property that has been
assessed and most sales, refinances, and foreclosures in California after 1990. Data for
each property includes square footage, lot size, number of bedrooms and bathrooms, and
the year the property was built. Each sale or refinance includes the value of the mortgage
and any additional loans taken against the property, as well as interest rates as estimated by
DataQuick using proprietary methods. Latitude and longitude are also included for each
property.

I drop sales that fall outside normal market transactions and which may not accurately
reflect the market’s valuation of the house. Specifically, all transactions must be arms-
length, non-distressed sales (i.e., no foreclosure sales or short sales) with a price of at least
$10,000. I also drop a sale if the property transacted within the previous 90 days, as many
of these transactions are duplicates. The sample is also restricted to homes built before

16. I also include in this group the southwestern most firm in the area in order to include the Palos Verdes
Peninsula in the regression sample.
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1995 to preclude direct sales from developers to consumers. The top 0.1% of sales are
winsorized.

Table 1 shows average sale price, house hedonics, and quarter of sale broken down
by the number of times a house transacted during the sample period. House prices are
deflated to real 2014 dollars using the all-items CPI. Houses are are not used in summary
statistics or regressions if they fall outside the sample region described in Section 3.3.

4.2 Census Block Groups

Data on Census block group demographics are taken from the 2000 Census and 2005–2009
5-year American Community Survey (ACS) sample. For each block group, these data
include total population; white (non-Hispanic) population; Hispanic population; black
population; the number of households; median of household income; median rent; and
educational attainment for individuals age 25 and older. The data also include the block
groups’ total land area, which I use to calculate population density (population per square
mile). I group educational attainment into three categories: people who did not graduate
high school; people who graduated high school but do not have a bachelor’s degree; and
people who hold at least a bachelor’s degree. To reduce noise, I drop block groups that
have less than 400 people in 2000, which is roughly the 4th percentile of all block groups
and constitutes less than 0.5% of all people in the sample. In specifications using median
rent, I drop observations with top coded values ($2001) in either year. Table 2 presents
summary statistics for both 2000 and 2005–2009.

4.3 Firms

There are several components to the firm-level data, which cover firm emissions over time,
the firm’s name and location, and physical characteristics of the firm’s polluting equipment.
The firm data also include information about RECLAIM Trading Credit (RTC) allocations
and subsequent trades.

Most of the data come from SCAQMD via public records requests (SCAQMD 2015a).
These data include each firm’s name, address, SCAQMD-assigned ID number, the mass of
NOx the firm emitted every quarter from 1994 to 2014, and all relevant RTC data, including
initial allocation of RTCs, the quantity, price, and vintage of exchanged RTCs, and the ID
numbers of participating firms. Firms’ operating addresses were geocoded to get latitude
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and longitude to represent the location of the firm’s smoke stacks, which are required by
AERMOD and other location-based calculations (see Appendix B.1 for more details).

AERMOD requires data on the physical characteristics of firms’ polluting equipment
(smoke stack height and diameter, and temperature and velocity of gas exiting the smoke
stack), which I take from the National Emissions Inventory (NEI). Regulators often collect
these data specifically to run atmospheric dispersion models like AERMOD, but the data
collected by SCAQMD could not be made available (SCAQMD 2015b). However, the
National Emissions Inventory (NEI) has these data for many firms along with each firm’s
name, address, SIC, and the type of combustion process behind each stack. I matched
most firms to the NEI by reconstructing the NEI-specific ID number from the SCAQMD
ID number and other administrative variables, and I validated these matches using fuzzy
string matching on firm names and addresses. Any remaining firms were matched via
fuzzy string matching and manually checked. For firms with missing stack data, I impute
values using the firm’s SIC and the stack’s equipment-type code (SCC). Details of the
imputation process and the construction of the firm-level data in general are outlined in
Appendix B.

Table 3 gives summary statistics by industry (4-digit SIC) on emissions, smoke stack
parameters, electric-generator status, average distance to the nearest meteorological station,
and the number of firms in each industry group.

4.4 Meteorology Data

Data on local meteorological conditions come from SCAQMD. Before building new
polluting equipment, firms must submit an impact report to SCAQMD using AERMOD
to show how the new equipment will impact ambient pollution levels. To facilitate the
making of these reports, SCAQMD makes AERMOD-ready meteorological data available
on its website.17

These data were gathered by 27 meteorological stations throughout SCAQMD. The
data consist of hourly data on temperature, wind speed, and wind direction at multiple
elevations; the standard deviation of vertical wind speed; the convectively and mechanically
driven mixing heights; and other parameters.18 Each station provides at least three years

17. The data are most easily accessible via the SCAQMD website: http://www.aqmd.gov/home/library/
air-quality-data-studies/meteorological-data/data-for-aermod

18. A full list of the variables used is found in the AERMOD user manual or Cimorelli et al. (2005).

16

http://www.aqmd.gov/home/library/air-quality-data-studies/meteorological-data/data-for-aermod
http://www.aqmd.gov/home/library/air-quality-data-studies/meteorological-data/data-for-aermod


of data between 2006 and 2012. While these stations were not in operation at the time of
the Crisis, wind patterns at the given locations are very stable over time.

4.5 AERMOD-based Measure of Exposure

I use AERMOD, which maps firm-level output to local exposure, to construct a measure
of a block group’s exposure from all industrial sources. Software for using AERMOD
is available on the EPA’s website and includes documentation, Fortran source code, and
pre-compiled executables for Windows.19

Location `’s exposure to NOx emissions from firm f at time t can be written NOx f t ·
h(d f `,θ f `;SSS f ), where SSS f contains information on the firm’s smoke stacks, as well as local
meteorological conditions. The data I use for NOx f t and SSS f are described in Sections
4.3 and 4.4. A firm’s meteorological data is taken from the nearest meteorology monitor.
The values for (d f `,θ f `) are calculated by AERMOD from firms and houses’ latitude
and longitude. AERMOD then outputs aermod` f t , the location’s exposure to the firm’s
emissions. The location’s total exposure to industrial NOx emissions is simply aermod`t =

∑ f aermod` f t .
For block group–level exposure, I first calculate exposure at the block level, then

calculate the population-weighted average for each block group. At the block level, I
use the process described above where ` is the Census-provided internal point for each
block.20 This is a more attractive approach than using the block group’s internal point
because it accounts for heterogeneity in population and exposure across the block group
and is a closer approximation to the average exposure to the block group’s residents. For
house-level exposure, I use

Because AERMOD loops over all firms, locations, and meteorological data, it is very
computationally intensive for such a large sample, so I impose several restrictions on
the data to make calculation more feasible.21 First, I only calculate a firm’s exposure to
houses that are within 20 kilometers of the firm and set exposure outside this radius to zero.

19. See http://www.epa.gov/scram001/dispersion_prefrec.htm. I use AERMOD version 13350, compiled
using Intel Fortran Compiler 15.0 for Linux and run on the Odyssey cluster supported by the FAS Division
of Science, Research Computing Group at Harvard University.

20. Analyses using Census geographies like block groups or ZCTA’s often use the “centroid” of the
geography as its the representative point in space. However, the Census Bureau is very particular to note that
because these geographies are not convex, the true centroid may lie outside the geography of interest. As a
solution, the Census Bureau calculates “internal points,” which are constrained to be inside the geography.

21. Even with these restrictions, the model takes approximately 210 CPU days to process all the data.
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Second, I use one year of meteorological data, 2009, which is also the only year during
which all of the meteorological stations described in Section 4.4 were operating. Third, for
houses, I round each house’s latitude and longitude coordinates to the nearest 100 meters
and assign houses within the same 100-meter grid square the same exposure.

5 Empirical Results

5.1 Income Stratification

The residential sorting model presented in Section 2 predicts that sorting will result in strat-
ified neighborhoods—neighborhoods with the best amenities will also have residents with
the highest incomes who pay the highest rents. Figure 7 compares these variables across
neighborhoods for the year 2000, before the Crisis. Each sub-figure is a binned scatterplot,
which divides the x-axis variable into quantiles with equal numbers of observations and
then plots the average x and y values within those quantile bins. This reduces the noise in a
full scatterplot while allowing the data to be represented in a fairly nonparametric manner.

The plots in Figure 7 are consistent with neighborhood stratification as predicted by the
model. Sub-figures (a) and (b) compare exposure to industrial NOx emissions to median
household income and rent, respectively. Low rents and incomes are strongly associated
with high pollution exposure, consistent with stratification. Similarly, sub-figure (c) plots
household income against rent and shows a strong positive relationship, again consistent
with stratification.

5.2 Rent

The model in Section 2 predicts that housing costs will increase after an amenity improve-
ment. Using a similar research design as this paper, Sullivan (2017) estimates the effect of
the Crisis on house prices using repeat housing sales. That paper finds that the reduced
form effect of the instrument on prices is 0.0032, meaning that each unit of treatment
intensity increased home prices by roughly 0.3 percent. The second-stage semi-elasticity
of exposure to prices is -0.0073, implying a MWTP to reduce pollution of $3,272.

Table 4 shows that rents respond to air pollution in very similar manner. Columns 1 and
2 show the reduced-form estimates, based on Equation (8), with the natural log of the block
group’s median rent as the dependent variable. The preferred specification is estimated
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in column 2 which weights each block group by its number of renter households in 2000
so that outliers from block groups with few renters do not skew the results. However, as
column 1 (raw population weights) shows, the weights used do not dramatically change
the point estimates. The estimates show that log rents increased by 0.0031 for every unit
of treatment intensity, very similar to the effect on log house prices (0.0032) from Sullivan
(2017). The second-stage estimates in columns 3 and 4 are likewise large and, in the case
of the preferred specification in column 4, statistically significant.

This stands in contrast with some of the more recent work on capitalization of rents
versus house prices which found rents to be less responsive to changes in air quality
(Grainger 2012; Bento, Freedman, and Lang 2015). It also suggests that low-income
households, who are predominantly renters, are not shielded from the price effects of air
quality improvement.

5.3 Demographics

Table 5 explores how the composition of neighborhoods changes in response to the Crisis-
induced pollution reduction. Panel A shows the correlation of pollution exposure, measured
by AERMOD, on the log of median block group income, log population, log number of
households, log number of housing units; and the fraction of households in “low” (less
than $30,000), “middle” ($30–60,000), and “high” (more than $60,000) income groups.
Each regression includes the controls listed in Section 3.3. While Figure 7 shows strong
relationships between pollution exposure and income, columns 1 show’s no statistically
significant relationship between the two after conditioning on neighborhood fixed effects
and trend effects for year 2000 demographics. Columns 5–7, which measure the effect
of a neighborhoods income distribution, as opposed to just its median, also show no
effect at conventional levels, nor is there any significant effect for the three measures of
population in columns 2–4. The contrast between these results and Figure 7 supports the
concern that pollution exposure is correlated with other spatial amenities and neighborhood
characteristics, and credibly measuring the effects of pollution exposure will require an
sudden exogenous shock to pollution.

Panel B shows the effects of such a shock by estimating the reduced-form effect
of the Crisis-induced pollution reduction. Column 1 shows no significant effect on log
median income. This is not inconsistent with the model, which has several ambiguous
predictions about median or average income. For example, if a neighborhood improves
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its air quality and the condition for low-income leaving given in Proposition 2 does not
hold, the neighborhood will have an increase in both lower- and higher-income households,
make the effect on median income ambiguous. Similarly, if a neighborhood is at the top of
the income distribution (Community 3 in Section 2 or Figure 2), an amenity improvement
will decrease median income. The two-stage least squares (2SLS) results in Panel C, where
aermod_pre×post is the excluded instrument for aermod, mirror those of Panel B

Columns 2–7 are highly suggestive evidence that low-income households fled neigh-
borhoods with improved air quality. Columns 2–4 measure the effect of the pollution
cleanup on three metrics of neighborhood size: population, number of households, and
number of housing units. In all three cases, neighborhood size decreases, with the first
two estimates being only marginally significant and the effect on housing units being
significant at 5%. This suggests that, on average, neighborhoods that improved actually
lost rather than gained residents as past theory on Tiebout sorting would predict. Such a
result is only consistent with “fleeing” of an amenity improvement. Columns 5–7, which
look at how the within-neighborhood income distribution changed, is also consistent with
a story of low-income residents fleeing. Column 5 shows that the fraction of low-income
households decreased significantly, while Column 7 shows an increase in the proportion of
high-income residents of similar magnitude. However, the decrease in the proportion of
low-income households does not necessarily indicate any fleeing, as these numbers could
be explained by a large influx of high-income households and no outflow of low-income.

Table 6 confirms that low-income households fled the improvements, on average, by
estimating separate effects for each income group. Each column re-estimates the effect of
the Crisis on the number of households in a block group, but restricts the outcome variable
to low-, middle-, or high-income households, respectively. The effect on low-income
households (column 1) is statistically significant and negative. Given the average treatment
intensity in the sample, this coefficient implies that sample area had roughly 9% fewer
low-income households than it would have had the Crisis not lowered pollution levels.

Table 7 further confirms that low-income households were most affected by the Crisis
by re-estimating the demographic effects of Table 5 while allowing the effect of the Crisis
to differ with the initial income distribution of each neighborhood. Column 1 shows
that neighborhoods with a higher proportion of low-income households ex ante did in
fact see a significant increase in median neighborhood income. Columns 2–4 show that
low-income neighborhoods experienced significant decreases in population, number of
total households, and number of housing units, with middle-income neighborhoods seeing
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an increase in households. Finally, columns 5–7 show that low-income neighborhoods,
more than others, saw a decrease in the fraction of low-income households, as well as a
marginally significant increase in high-income households.

5.4 Home-ownership and Incidence

This evidence of low-income households leaving improved areas suggests that these
households valued the amenity improvement significantly less than their higher-income
neighbors. However, this interpretation depends on the model’s assumption that all
households are renters to absentee landlords, which is obviously not the case here. Since
the pollution reduction increased housing values, incumbent home owners reaped a wealth
windfall. It is entirely possible that low-income households, who are more likely to be
liquidity constrained, might sell their homes to realize this unexpected capital gain, then
re-optimize given their new budget constraint.

Figure 8a plots the results of a local linear regression of a block group’s home-
ownership rate in 2000 on its median household income in 2000, weighted by the block
group’s population in 2000. Ownership rate is strongly correlated with income, increasing
from around 10% for the poorest neighborhoods to about 95% for the richest. This suggests
that low-income emigrants did not leave in order to realize capital gains, suggesting a
regressive distribution of benefits from the pollution reduction.

One final factor that might make the distribution of benefits more progressive is the
fact that poorer areas were more polluted to begin with and thus enjoyed a more significant
improvement. It is possible that the few low-income home owners enjoyed such a large
price windfall that average benefits to low-income households was still large. However,
Figure 8b shows this was not the case.

The dashed line in Figure 8b plots house-price windfall per capita by income using a
local linear regression and the housing sale–based MWTP estimate from Sullivan (2017).
This dashed line represents the per capita gain through home values if all households were
incumbent homeowners. As the figure shows, poorer areas did indeed see much larger
gains on average: the lowest-income areas see a gain of $3,500–4,000 per person, while
the highest-income areas receive roughly $2,000.

But this differential is not enough to offset the much wider gap in home-ownership
rates. The solid line in Figure 8b plots the windfall per capita for local owner-residents
only. In the extreme case where all households are marginal and house prices capture
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all the welfare gains of the pollution clean up, the plot shows that the clean up is indeed
regressive. In the more realistic case with many inframarginal households, it is more
difficult to say.

6 Conclusion

This paper examines how neighborhood composition and rents change in response to
changes in air quality. I extends Epple, Filimon, and Romer’s (1984) widely used model of
spatial equilibrium to show that evidence of lower-income households “fleeing” amenity
improvements suggests that a policy to improve amenities may have a relatively regressive
distribution of benefits. I then use block group data from the Census to estimate how
households responded to the exogenous change in pollution levels caused by the California
Electricity Crisis of 2000.

Together, the results suggest that low-income households did not benefit as much
from the improvement in air quality as high-income households did. First, housing rents
increase just as much as housing prices and low-income renters still have to pay for
improved air quality. Second, neighborhoods with improved air quality see a significant
decrease in low-income residents, with suggestive evidence that they are displaced by
higher-income newcomers. Third, home-ownership rates among low-income households
are low, suggesting they did not directly benefit from the air quality improvement through
a wealth windfall and did not leave in response to an increase in wealth.

Thus, while Sullivan (2017) finds that the air quality improvement significantly in-
creased aggregate welfare, this paper finds that lower-income residents did not benefit
as much as higher-income residents. Given past evidence that the costs of air quality
improvements are generally borne more by low-income households, it appears that a policy
to improve air quality, even if specifically targeted at low-income neighborhoods, is likely
to be a regressive policy due to resident sorting and the housing market.
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A Proofs

Definition 4 (Notation). For simplicity of notation, let

X j =
∫ ỹ j

ỹ j−1

hp(p j,y) f (y)dy−S j
p(p j)

H i j = h(pi, ỹ j) f (ỹ j)

V i j =V (ỹi, p j,g j)

Lemma 1. The following hold:

H i j > 0 ∀i, j

X j < 0 ∀ j

V j, j
y −V j, j+1

y < 0 ∀ j < J

Proof. H i j > 0 follows from non-negative demand and non-negative probability distribu-
tion f . X j < 0 follows from downward-slopping demand and upward-slopping supply:
hp < 0 and S j

p > 0. For the last inequality, recall that that, by definition of ỹ1, we have
V (ỹ1, p1,g1) = V (ỹ1, p2,g2) and for y ∈ (ỹ1, ỹ2], j = 2 is preferred to j = 1. Thus, for
0 < ε < ỹ2− ỹ1, we have V (ỹ1 + ε, p1,g1)<V (ỹ1 + ε, p2,g2), so V j, j

y −V j, j+1
y < 0.

Lemma 2. If V satisfies single-crossing, then, for arbitrary p, g, and y2 > y1 > 0,

Vp(y1, p,g)
Vp(y2, p,g)

>
Vg(y1, p,g)
Vg(y2, p,g)

Proof. Single-crossing requires M =−Vg/Vp to be monotonically increasing in y.

M(y2, p,g)> M(y1, p,g)

⇔−
Vg(y2, p,g)
Vp(y2, p,g)

>−
Vg(y1, p,g)
Vp(y1, p,g)

⇔
Vp(y1, p,g)
Vp(y2, p,g)

>
Vg(y1, p,g)
Vg(y2, p,g)
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Proposition 1. The following conditions hold:

∂ ỹ2

∂g2
> 0;

∂ p2

∂g2
> 0;

∂ p3

∂g2
< 0 (4)

∂ ỹ1

∂g2
∝

∂ p1

∂g2
(5)

and the sign of ∂ ỹ1/∂g2 is ambiguous.

Proof. For J = 3, the equilibrium conditions given by Definition 3 can be written FFF(θθθ ,ggg)=

000 where θθθ = (ỹ1, ỹ2, p1, p2, p3), ggg = (g1,g2,g3), and

FFF(θθθ ,ggg) =



V (ỹ1, p1,g1)−V (ỹ1, p2,g2)

V (ỹ2, p2,g2)−V (ỹ2, p3,g3)∫ ỹ1
y h(p1,y) f (y)dy−S1(p1)∫ ỹ2
ỹ1

h(p2,y) f (y)dy−S2(p2)∫ y
ỹ2

h(p3,y) f (y)dy−S3(p3)


The Jacobian of FFF with respect to θθθ is

∂FFF
∂θθθ

=



V 11
y −V 12

y 0 V 11
p −V 12

p 0
0 V 22

y −V 23
y 0 V 22

p −V 23
p

H11 0 X1 0 0
−H21 H22 0 X2 0

0 −H32 0 0 X3


By Lemma 1, the Jacobian determinant is strictly negative.

det
∂FFF
∂θθθ

= H21H32V 12
p V 23

p X1 +H11H32V 11
p V 23

p X2 +H11H22V 11
p V 22

p X3

+
(

X1X2X3(V 22
y −V 23

y )−H32V 23
p X1X2

)
(V 11

y −V 12
y )

−
(

H21V 12
p X1 +H22V 22

p X1 +H11V 11
p X2

)
(V 22

y −V 23
y )X3 < 0

As this determinant is non-zero, the Jacobian is non-singular and we can invoke the implicit
function theorem to write θθθ as a function of ggg such that FFF(θθθ ∗(ggg),ggg) = 000. (For clarity of
notation going forward, I omit stars from variables at their equilibrium value.)
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Differentiating the equilibrium condition with respect to g2 yields

∂FFF
∂θθθ
· ∂θθθ

∂g2
=− ∂FFF

∂g2

V 11
y −V 12

y 0 V 11
p −V 12

p 0
0 V 22

y −V 23
y 0 V 22

p −V 23
p

H11 0 X1 0 0
−H21 H22 0 X2 0

0 −H32 0 0 X3





∂ ỹ1/∂g2

∂ ỹ2/∂g2
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V 12
g

−V 22
g

0
0
0


Solving for ∂θθθ/∂g2 yields
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y

)
+H11H32V 22

g V 11
p X2


The Jacobian determinant is negative and, using Lemmata 1 and 2, it is clear upon
inspection that the signs of ∂θθθ/∂g2 are consistent with the statement of the proposition.

The proportionality of ∂ ỹ1/∂g2 and ∂ p1/∂g2 follows from

−X1

H11
∂ p1

∂g2
=

∂ ỹ1

∂g2

Proposition 2.
∂ ỹ1

∂g2
> 0

if and only if
M(ỹ2, p2,g2)

M(ỹ1, p2,g2)
> R∗ (6)
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where R∗ depends on (ỹ2,g2,g3, p2, p3).

Proof. Re-write ∂ ỹ1/∂g2 as

∂ ỹ1

∂g2
=

(
det

∂FFF
∂θθθ

)−1

X1X2X3V 12
g

H22V 22
p
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(
M22
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y

)
−H23V 23

p
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where Mi j = M(ỹi, p j,g j). Then

∂ ỹ1

∂g2
> 0

⇔ H22V 22
p

X2

(
M22
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+
(

V 22
y −V 23

y
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−H23V 23

p

X3 > 0

⇔ M22

M12 > 1+
H23 V 23

p
X3 +V 23

y −V 22
y

H22 V 22
p

X2

= R∗

Recall from Definition 4 that X j is the derivative of excess housing demand in j with
respect to price; H2 j is amount of housing demanded by ỹ2 in j; and V 2 j

p =Vp(ỹ2, p j,g j),
the derivative of ỹ2’s indirect utility in j with respect to price. Thus, R∗ depends on the
ỹ2’s utility tradeoffs in j = 2 versus j = 3.

Proposition 3. The comparative statics for g1 are g3 are

∂ ỹ1

∂g1
> 0;

∂ ỹ2

∂g1
> 0;

∂ p1

∂g1
> 0;

∂ p2

∂g1
< 0;

∂ p3

∂g1
< 0;

∂ ỹ1

∂g3
< 0;

∂ ỹ2

∂g3
< 0;

∂ p1

∂g3
< 0;

∂ p2

∂g3
< 0;

∂ p3

∂g3
> 0;
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Proof. Following the proof of Proposition 1,
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and
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Again following the methods used in Proposition 1, we get the sign of each element of
these vectors.

B Firm Data Construction

B.1 Geocoding

The accurate geocoding of pollution sources is obviously critical when analyzing the
effect these sources have on the surrounding population. Administrative records on the
latitude and longitude of each smoke stack operated by the firm would be the ideal data.
Regulators often collect this data for the explicit purpose of dispersion modeling, and
though SCAQMD does collect this data, they are unavailable for public use (SCAQMD
2015b). In lieu of direct geographic data for each smoke stack, I follow the literature and
simply geocode the firms’ street addresses, taking care to use the actual operating address
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of the firm and not a corporate or mailing address which are often listed in databases. For
large firms and firms that match to interpolated street addresses instead of parcel centroids,
I double-checked the coordinates using satellite photos from Google Maps to make sure the
geographic point that represents the firm is reasonably close to the actual smoke stacks.22

B.2 Facility ID

SCAQMD assigns each facility an ID number; however, a facility may have more than one
ID number in the data, both over time and cross-sectionally. This is primarily a concern
when matching firms to the NEI, as described in Appendix B.3. It might also affect the
pattern of firm behavior described by Figure 5, though this figure is only descriptive and
not used in any calculations.

A facility’s ID can change under a number of circumstances: the facility is sold,
changes its name, or some part of its address changes. For the most part, these changes
occur for superficial reasons, e.g., a zip code or street suffix is changed. To construct
unique facility ID’s, I flagged every pair of facilities less than 400 meters apart and visually
inspected satellite photos and emissions data for every cluster of neighboring facilities.
First, firms were merged if they occupied the same or neighboring parcels and shared
breaks in their time series of emissions. For example, Facility A emits 25 tons per quarter
from 1994 to 1999Q3 and then is missing from the data, while Facility B, located at
the same parcel of land as A, enters the data in 1999Q4 and begins emitting 25 tons per
quarter. Facilities were also merged if they had similar names and occupied the same or
neighboring parcels of land. These merges were verified by checking whether or not the
firms appeared separately in the NEI.

B.3 Stack Data from the NEI

Data for each firm’s smoke stacks is taken from the National Emissions Inventory (NEI)
from 1999 and 2002. Besides the smoke stack parameters, the NEI also has data on firm’s
name, address, SIC, and the equipment’s SSC, and the estimated emissions by pollutant
for each stack.23 It also includes the ID number assigned to the facility by state-level

22. This is potentially important because the firm’s “store-front” address right on the street is often at
the edge of the property, far away from the smoke stacks. Using unchecked street addresses can introduce
significant errors (1–2 km) for firms that occupy large parcels of land.

23. The Source Classification Codes (SCC) for point pollution sources are a hierarchical index used by the
EPA that categorize pollution-generating equipment by combustion type, fuel type, and size. It is analogous
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regulators. For SCAQMD firms, this “state ID” consists of a county code, an air basin code,
an air district code, and the SCAQMD-assigned facility ID. Using this reconstructed ID, I
was able to match most facilities in the SCAQMD emissions data to the NEI using either
their own facility ID or an ID from a facility I had previously matched to it as described in
section B.2. I used the 2002 NEI data whenever possible, falling back to the 1999 database
when necessary. For facilities whose ID’s did not match either dataset, I tried to match
them using firm address and name. Firms that still did not match were almost all small
firms that had ceased to exist before the NEI 1999 data was collected. These firms should
have little impact on the overall results and were dropped. For matched facilities, I verified
that individual stacks were not duplicated.

Many of the stack parameters in the NEI are flagged as imputed values. The imputation
process was not well documented, so I re-imputed them using the median stack parameters
from all non-imputed stacks in the SIC and SCC group. Finally, when passing the stack
parameters to AERMOD, I weighted each stack according to its reported emissions in the
NEI.

to the hierarchical SIC and NAICS industry codes.
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Figures and Tables

(a) Before improvement in City 2

yl yhỹ

City 1 City 2

(b) After improvement

yl yhỹỹ′

City 1′ City 2′

Figure 1: Shock to a Two-community Equilibrium

yl yhỹ1 ỹ2

City 1 City 2 City 3

Figure 2: A Three-community Equilibrium
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(a) Northern Monitor
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(b) Southern Monitor
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Figure 3: AERMOD and Pollution Monitor Readings Over Time

Notes: Figures plot exposure to NOx as predicted by AERMOD (solid lines) at the two monitor
locations shown in Figure 6a, as well as the actual monitor readings for each location (dashed
lines). Plotted values are the fourth quarter average for the given year for reasons of atmospheric
chemistry, see Section 3.1.
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Figure 4: RECLAIM Market

Notes: “Total RTCs” is the number of RTCs expiring in the calendar year. “Price” is the average of
all arms-length transactions in a month across all RTC vintages.
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(a) Quarterly
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(b) Annual
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Figure 5: Scaled Emissions by Firm Type

Notes: Firm emissions are scaled by firm’s own maximum emissions.
Sample is restricted to firms that operated in at least 8 quarters.
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(a) Exposure to NOx Emissions

(b) Fraction of Block Group with Low Income
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Figure 6: Exposure to Pollution and Block Group Income in 2000

Notes: Sub-figure (a) plots the average exposure to industrial NOx emissions Sub-figure (b) plots
the fraction of each block group’s households with household income less than $30,000.
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(a) Pollution and Income
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(b) Rent and Pollution
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(c) Rent and Income
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Figure 7: Neighborhood Stratification by Income, Rent, and Pollution in 2000

Notes: Figures are binned scatterplots of the listed variables. Each point is the y- and x-variable
average within 20 quantile bins of the x-axis variable.
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(a) Home-ownership rate
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(b) House Price Windfall
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Figure 8: Home-ownership and Price Windfall by Income

Notes: Plots are the result of local linear regressions using an Epanechnikov kernel with bandwith
of 5. Sample is Census 2000 block groups, weighted by population. In subplot B, the dashed line is
the gain to owners of units occupied by a household with the given income, and the solid line is the
gain to residents.
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Table 1: House Summary Statistics

Never Sold Sold Once Repeat Sales
Pre Post Pre Post

Sale Price 394,839 541,228 420,912 603,347
(284,955) (357,514) (304,854) (396,748)

Lot Size 6,544 6,617 6,381 6,245 6,010
(6,662) (7,173) (6,793) (5,567) (4,926)

Square Feet 1,537 1,611 1,534 1,574 1,492
(651) (722) (690) (710) (656)

Year Built 1950 1952 1950 1951 1950
(15.24) (15.61) (15.77) (16.97) (16.79)

Bedrooms
1 0.01 0.01 0.01 0.01 0.02
2 0.23 0.22 0.24 0.25 0.27
3 0.48 0.48 0.49 0.49 0.49
4 0.22 0.23 0.21 0.21 0.19
5+ 0.05 0.05 0.05 0.04 0.03

Bathrooms
1 0.34 0.29 0.33 0.31 0.35
2 0.47 0.47 0.46 0.45 0.45
3 0.13 0.16 0.13 0.15 0.13
4+ 0.03 0.04 0.04 0.05 0.04

Sold in Quarter
1 0.19 0.22 0.20 0.21
2 0.28 0.27 0.29 0.28
3 0.28 0.28 0.28 0.27
4 0.25 0.24 0.24 0.23

Times Sold 2.14
(0.38)

Total Properties 275,218 84,041 19,545

Notes: Summary statistics from regression sample as described in Section 4.1. Table lists
sample means with standard deviations given in parentheses.
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Table 2: Block Group Summary Statistics

Total Mean
2000 2005/9 2000 2005/9

Population 2,775,700 2,811,468 1,435 1,454
(814) (867)

Households 950,591 952,008 492 492
(322) (332)

Pop. Density (pop/mi2) 13,423 13,518
(8,389) (8,815)

Household Income (BG Median) 49,292 64,211
(23,411) (32,920)

Population over age 25 1,717,881 1,796,814 888 929
(505) (564)

Educational Attainment (count)
Less than High School 458,399 384,055 237 199

(221) (209)
High School Grad 830,050 895,603 429 463

(269) (294)
More than High School 429,432 517,156 222 267

(262) (312)
Educational Attainment (fraction)

Less than High School 0.28 0.22
(0.22) (0.19)

High School Grad 0.48 0.50
(0.13) (0.14)

More than High School 0.24 0.28
(0.19) (0.21)

Race/Ethnicity (count)
White (non-Hispanic) 852,136 787,815 441 407

(468) (466)
Hispanic 1,030,236 1,147,634 533 593

(546) (601)
Black 507,488 468,462 262 242

(380) (378)
Race/Ethnicity (fraction)

White (non-Hispanic) 0.34 0.32
(0.31) (0.30)

Hispanic 0.34 0.38
(0.26) (0.28)

Black 0.19 0.17
(0.25) (0.24)

Notes: Number of block groups is 1,934. Block groups with fewer than 400 people in 2000
are excluded from regression sample and so are excluded here. Data for 2000 comes from
the 2000 Census. Data for 2005/9 comes from the 2005–2009 ACS 5-year sample and is
labeled “2005” elsewhere. All educational attainment variables are restricted to people who
are at least 25 years old. Income is denominated in nominal dollars. Standard deviations in
parentheses.
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Table 3: Firm Summary Statistics by Industry

Petr
oleu

m
Refi

ning
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s

Other
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Gas
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d Air-C
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ning Supply

Seco
ndary

Smelt
ing an

d Refi
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Other
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Inorgan
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Chem
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ls

Gypsum
Products

All Firm
s

Mean Emissions (tons)
1998 524.8 212.6 16.8 31.1 38.8 45.5 39.7 33.7 62.0
2002 380.9 56.1 11.1 8.9 5.7 24.8 37.0 8.8 33.2

Median Emissions (tons)
1998 332.4 120.0 4.8 5.7 14.5 41.0 34.5 28.7 7.2
2002 255.6 42.2 2.9 1.4 3.7 22.4 43.6 9.3 4.1

Industry Share of Total Emissions (percent)
1998 42.6 28.8 18.9 3.6 2.1 1.6 1.4 0.9 100.0
2002 56.1 13.8 23.9 1.9 0.6 1.6 1.8 0.4 100.0

Mean Smoke Stack Characteristics
Height (m) 25.1 37.4 12.3 7.1 19.1 10.6 28.4 19.6 14.9
Diameter (m) 1.3 3.6 0.8 0.4 0.9 0.7 0.9 1.2 1.0
Velocity (m/s) 8.6 20.1 10.8 14.2 12.5 12.5 11.9 9.5 11.7
Temp. (◦C) 292.8 231.0 223.0 351.5 191.6 120.9 251.0 271.2 233.7

Mean Dist. to Weather
Monitor (km) 7.0 7.5 6.3 6.2 6.8 5.2 6.1 5.9 6.4

No. of Firms 9 15 150 14 6 4 4 3 205

Notes: Sample of firms is those within 20 km of sample area shown in Figure 6a.
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Table 4: Effect on Block Group Median Monthly Rent

(1) (2) (3) (4)

Aermod_pre×post 0.0031* 0.0031**
[0.0018] [0.0015]

Aermod -0.0124 -0.0126**
[0.0076] [0.0063]

Method OLS OLS 2SLS 2SLS
Weighted by Pop. Renters Pop. Renters
R2 0.9331 0.9536

Notes: N=3,162. Outcome is log of median rent. Excluded instrument
in 2SLS regressions is aermod_pre×post. Rents with error codes ($0) or
top codes ($2,001) are dropped from the sample. Sample and controls are
otherwise the same as in Table 5, plus an interaction of median rent in
2000 with post. Sample average of aermod_pre is 6.781. Standard errors,
clustered by tract, in brackets: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5: Effect of Pollution on Block Group Demographics

(1) (2) (3) (4) (5) (6) (7)
ln Income ln Pop. ln H-holds ln H. Units % Low Inc % Mid Inc % High Inc

A. OLS with Controls
Aermod 0.0020 -0.0012 0.0014 0.0059 0.0029 0.0021 -0.0050*

[0.0050] [0.0054] [0.0043] [0.0041] [0.0027] [0.0018] [0.0027]

B. Reduced Form
Aermod_pre×post 0.0036 -0.0025* -0.0024* -0.0030** -0.0028*** -0.0001 0.0029***

[0.0026] [0.0014] [0.0014] [0.0015] [0.0008] [0.0007] [0.0010]

C. 2SLS
Aermod -0.0143 0.0100* 0.0096* 0.0121** 0.0113*** 0.0004 -0.0116***

[0.0108] [0.0056] [0.0056] [0.0058] [0.0035] [0.0026] [0.0043]

Notes: N=3,870. Sample periods are 2000 and 2005–2009 using data from the 2000 Census and 2005–2009 ACS, respectively.
Regressions include block group fixed effects and 10-km grid–post dummies. Year-2000 demographic controls, interacted with “post”,
include: population, number of households, number of housing units, ln median household income, number of people at least 25 years
old, fraction without a high school diploma, fraction with diploma but no college, fraction white (non-Hispanic), fraction Hispanic,
fraction black. All educational attainment variables are restricted to the sample of people who are at least 25 years old. Block groups
with fewer than 400 people in 2000 are dropped. Sample average of aermod_pre is 6.222. Standard errors, clustered by tract, in brackets:
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: Change in Population by Household Income

(1) (2) (3)
log Low Inc log Mid Inc log High Inc

Aermod_pre×post -0.0142** -0.0034 0.0060
[0.0062] [0.0033] [0.0039]

R2 0.9200 0.9052 0.9438
N 3,786 3,834 3,846

Notes: Low income is households with less than $30,000 income, mid
is $30-60,000, and high is $60,000 or more. Block groups with zero
households of the given income group in either year are dropped. Sample
and other control variables the same as in Table 5.

Table 7: Change in Demographics by Initial Neighborhood Income

(1) (2) (3) (4) (5) (6) (7)
ln Income ln Pop. ln H-holds ln H. Units % Low Inc % Mid Inc % High Inc

Aermod_pre×post×
% Low Income in 2000 0.022*** -0.025** -0.027** -0.023** -0.010*** 0.004 0.007*

[0.008] [0.011] [0.011] [0.012] [0.003] [0.003] [0.004]
% Mid Income in 2000 -0.012 0.023 0.028** 0.019 0.006 -0.005 -0.001

[0.013] [0.015] [0.014] [0.015] [0.005] [0.004] [0.006]
% High Income in 2000 0.000 -0.004 -0.006 -0.004 -0.003 0.000 0.003

[0.010] [0.007] [0.007] [0.006] [0.003] [0.003] [0.005]

Notes: Low income is households with less than $30,000 income, mid is $30-60,000, and high is $60,000 or more. Sample and other
control variables the same as in Table 5.
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